K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
GE FANUC Mark* VIe Control
❤ Add to collection

GE FANUC Mark* VIe Control

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

This document is distributed for informational purposes only. 

It is not to be construed as creating or becoming part of any 

General Electric Company contractual or warranty obligation 

unless expressly stated in a written sales contract.

22000.00
¥22000.00
Weight:3.500KG
Quantity:
(Inventory: 20)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

This document is distributed for informational purposes only. 

It is not to be construed as creating or becoming part of any 

General Electric Company contractual or warranty obligation 

unless expressly stated in a written sales contract.


GE FANUC Mark* VIe Control

Mark* VIe is a flexible control system for multiple applications. It features high speed, networked I/O for simplex, dual, and triple redundant systems. Industry standard Ethernet
communications are used for I/O, controllers, and supervisory

interface to operator and maintenance stations, and third-party systems.
ToolboxST* is used for Mark VIe and related controls as a common software
platform for programming, configuring I/O, trending, and analyzing diagnostics. It
provides a single source of quality, time-coherent data at the controller and plant

level for effectively managing equipment assets.
A single-board controller is the heart of the system. It includes the main processor

and redundant Ethernet drivers for communicating with networked I/O and
additional Ethernet drivers for the control network. A QNX® real-time, multitasking
operating system is used for the main processor and I/O. Application software is
provided in a configurable control block language, and is stored in non-volatile
memory. It conforms to IEEE-854 32-bit floating-point format.
IONet is a dedicated, full-duplex, point-to-point protocol that provides a
deterministic, high-speed 100 MB communications network suitable for local or
remote I/O with a fiber interface. It provides communication between the main
processor(s) and networked I/O blocks, called I/O packs.
100 MB Ethernet is used for
communication to local and
remote I/O packs. The IONet
is available in single, dual,
and triple configurations.
Each I/O pack is mounted on a board with barrier or box-type terminal blocks. The
I/O pack contains two Ethernet ports, a power supply, a local processor, and a data
acquisition board. Computation power grows as I/O packs are added to the control
system, enabling an overall control system frame rate of 10 ms in simplex, dual, or
triple redundant configuration. Some process sub-systems require even more
performance; therefore, the local processors in each I/O pack run algorithms at
higher rates as required for the application.
Redundancy
Every application has different requirements for redundancy depending on the
importance of the process. Mark VIe provides a wide range of redundancy options
that can be supplied in virtually any combination and mounted local or remote. Some
of these redundancy options include:
• Power sources and supplies single, dual, and triple
• Controllers (main processor) single, dual, and triple
• I/O network redundancy single, dual, and triple
• I/O packs per terminal board single, dual, and triple
• Ethernet Ports / I/O pack single or dual


Controllers are continuously online and read input data directly from IONet. Dual
redundant systems transmit inputs from one or redundant I/O packs on dual IONets
to dual controllers. Outputs are transmitted to an output I/O pack that selects either
the first healthy signal or the signal of choice. Three output packs can be provided to
vote output signals for mission-critical field devices.
Dual redundant systems can be configured for single, dual, and triple sensors. Their
dual internal networks and controllers keep the process online if a controller or
power supply fails. Triple redundant systems are available to protect against soft or
partial failures of devices that continue to run but with incorrect signals/data.
These systems out vote a failed component with a 2-out-of-3 selection of the signal.
Application software in all three controllers runs on the voted value of the signal
while diagnostics identify the failed device. These sophisticated diagnostics
minimize the mean-time-to-repair (MTTR) while the on-line repair capability
maximizes the mean-time-between-forced-outages (MTBFO). Field sensors for these
systems can be single, dual, or triple.
A second controller can be provided to separate the application software for different
pieces of equipment. For example, a core engine control for an air-fuel governor can
run in one controller while a second controller can be dedicated to auxiliary control.
Note Every I/O pack communicates directly on IONet, which enables each I/O pack
to be replaced individually without affecting any other I/O in the system. Also, the
I/O pack can be replaced without disconnecting any field wiring.
I/O Interface
One or multiple I/O packs are mounted on each board to digitize the sensor signal,
perform algorithms, and communicate with a separate controller that contains the
main processor. I/O packs have a local processor board that runs a QNX operating
system and a data acquisition board that is unique to the type of input device. Local
processors run algorithms at faster speeds than the overall control system.
An on-board temperature sensor
provides continuous monitoring of
the environment in remote
locations.
An infrared transceiver is useful for low-level diagnostics. I/O values can be
monitored, I/O pack host/function names can be programmed, and error statuses can
be checked. This requires a Windows®-based diagnostic tool on a laptop or a
handheld computer.
• Dual 100 MB Ethernet ports
• 100 MB full duplex ports
• Online repair per I/O pack
• Operation -30°C to 65°C (-22 °F to 149 °F)
• Accuracy -30°C to 65°C (-22 °F to 149 °F)
• I/O packs rated Class 1, Div. 2
• Ambient temperature sensor
• LEDs: power status and attention
• LEDs: Ethernet link-connected and communication-active
• LEDs: application-specific
• Processor: 32-bit RISC CPU 266 mHz
• Infrared Transceiver: Low level diagnostics, monitor I/O,
set host/function names, error status
• Power: 28 V dc (typical)
• Internal solid-state circuit breaker and soft start
The I/O Processor contains a temperature sensor that is accurate to within ±2°C
(±3.6 °F). Detection of an excessive temperature generates a diagnostic alarm, and
the logic is available in the database (signal space) to facilitate additional control
action or unique process alarm messages. In addition, the temperature is
continuously available in the database.
A power supply provides a regulated 28 V dc power feed to each I/O pack. The
negative side of the 28 V dc is grounded through the I/O pack metal enclosure and its
mounting base. The positive side has solid-state circuit protection built-into the I/O
pack with a nominal 2 A trip point. Online repair is possible by removing the
28 V dc connector, replacing the I/O pack, reinserting the power connector, and
downloading software from the software maintenance tools.
Note Every I/O pack communicates directly on IONet, which enables each I/O pack
to be replaced individually without affecting any other I/O in the system. Also, the
I/O pack can be replaced without disconnecting any field wiring.


Terminal Blocks
Signal flow begins with a sensor connected to a terminal block on a board. There are
two types of boards available. T-type boards contain two 24 point, barrier-type,
removable, terminal blocks. Each point can accept two 3.0 mm2
(#12AWG) wires
with 300 V insulation per point with spade or ring type lugs. In addition, captive
clamps are provided for terminating bare wires. Screw spacing is 9.53 mm (0.375
inch) minimum, center-to-center.
A shield strip is provided next to each block, which is actually the left-hand side of
the metal base where the board is mounted. Wide and narrow boards are arranged in
vertical columns of high and low-level wiring that can be accessed from top and/or
bottom cable entrances. An example of a wide board is a board that contains
magnetic relays with fused circuits for solenoid drivers. T-type boards are normally
surface mounted, but can also be DIN-rail mounted.
Barrier and Box Type Boards with I/O Packs
S-type boards have one I/O pack for simplex and dual redundant systems. They are
half the size of T-type boards and are DIN-rail or surface mounted. Two versions of
the boards are available, H1 and H3. H1 boards have fixed terminal blocks, and H3
boards have removable terminal blocks. A H2 version is available for mounting of
custom blocks such as spring-cage or insulation displacement.
S-type boards have box type terminal blocks that accept one 3.0 mm2
(#12AWG)
wire or two 2.0 mm2
(#14AWG) wires with 300 V insulation per point. Screw
spacing is 5.08 mm (0.2 inch) minimum, center-to-center. A shield strip is provided
to the left of each block. It can be connected to a metal base for immediate grounding
or floated to allow individual ground wires from each board to be wired to a
centralized, cabinet ground strip.
  • TRICON ®/ Installation and maintenance of E/E2/E3 transmitters
  • TRLC0NEX Tricon fault-tolerant controller
  • WAGO 221 series LEVER-NUTS ® Compact splicing connector
  • WAGO-I/O-SYSTEM 750 Programmable Fieldbus Controller ETHERNET 
  • WAGO Rail-Mount Terminal Blocks with Screw and Stud Connection
  • WAGO series molded case circuit breaker (MCCB)
  • WAGO Rail-Mount Terminal Blocks
  • WAGO I/O System 750/753 Series Distributed Automation System
  • HIMA X-CPU 01 processor module
  • Westinghouse iGen5000 Digital Inverter Generator
  • Westinghouse WGen7500DF Dual Fuel Portable Generator
  • Westinghouse WPX2700H/WPX3100H High Pressure Cleaning Machine
  • Westinghouse WH7500V portable generator
  • Westinghouse WGen9500c portable generator
  • Westinghouse DS/DSL series low-voltage power circuit breakers
  • Westinghouse ePX3500 Electric High Voltage Cleaning Machine
  • Westinghouse ST Switch Intelligent Automatic Portable Transfer Switch
  • Westinghouse 2400i digital inverter generator
  • Westinghouse iGen series digital inverter generator
  • HIMA CPU 01 Controller Module
  • Westinghouse WPX3000e/WPX3400e electric high-pressure cleaning machine
  • Westinghouse WGen2000, WGen3600, and WGen3600V portable generators
  • Westinghouse WGen5500 Generator
  • Westinghouse WGen20000 Generator
  • Westinghouse WPro8500 and WPro12000 portable generators
  • Westinghouse iGen4500DFc Dual Fuel Digital Variable Frequency Generator
  • Watlow Series L Temperature Limiting Controller
  • Watlow Series F4P Series 1/4 DIN (96 × 96mm) Temperature/Process Controller
  • Watlow EZ-ZONE ® RME (Expansion) Module
  • Watlow EZ-ZONE ® RMA (Access) module
  • Watlow PM PLUS ™ 6 Series PID Integrated Controller
  • Watlow Immersion Heater
  • Watlow F4T Controller Installation and Failure
  • Watlow DIN-A-MITE ® Style C Solid State Power Controller
  • Watlow plug-in heater
  • Watlow Series 942 Controller
  • Watlow Series 988 Controller
  • Watlow Series 146 Temperature Regulator
  • Watlow PM LEGACY ™ Limit controller
  • Johnson AE55/NIE55 Installation Guide
  • Watlow Series 96 Temperature Controller
  • Watlow PM PLUS ™ PID/Integrated Limit Controller
  • Watlow Ceramic Fiber Heater
  • Watlow Power Series microprocessor based SCR power controller
  • Watlow thermocouple products
  • Watlow Series 965 Controller
  • Watlow PM3 LEGACY ™ PID controller
  • Watlow Series 93 Controller
  • Watlow EZ-ZONE ® PM PID controller
  • Watlow CLS200 series controller
  • YAMAHA RCX40 4-axis robot controller
  • YASKAWA Z1000 series HVAC dedicated frequency converter
  • YASKAWA HV600&Z1000U series HVAC dedicated frequency converter
  • YASKAWA Power Regenerative Unit R1000 Series
  • YASKAWA AC Drive P1000 Industrial Fan and Pump Special Frequency Converter
  • YASKAWA FP605 series industrial fan pump dedicated driver
  • YASKAWA GA500 series AC micro driver
  • YASKAWA AC Drive G7 Series (Model CIMR-G7U)
  • YASKAWA U1000 series 24V power supply options (PS-U10L/PS-U10H)
  • YASKAWA GA800 industrial AC frequency converter Key issues
  • YASKAWA GA800 Industrial AC Inverter
  • YASKAWA AC Drive V1000 Compact Vector Control Drive
  • YASKAWA Control Pack CP-317M System Controller
  • YASKAWA VARISPEED-626M/656MR5 series vector control frequency converter
  • YASKAWA AC Servo Drive HR Series (CACR-HR) Multi functional/Positioning Control
  • YASKAWA MP2000 series machine controller communication module
  • Yokogawa AQ1100 series OLTS multi field tester
  • YOKOGAWA AQ7280 Optical Time Domain Reflectometer
  • YOKOGAWA AQ2200 Series Multi Application Testing System
  • YOKOGAWA AQ6150B/AQ6151B Optical Wavelength Meter
  • YOKOGAWA AQ6360 Optical Spectrum Analyzer
  • Yokogawa AQ6375E Spectral Analyzer Remote Control
  • Yokogawa DL350 Scope Order Communication Interface
  • Yokogawa 701944/701945 100:1 High Voltage Probe
  • Yokogawa CA700 pressure calibrator
  • Yokogawa DLM5000HD series high-definition oscilloscope
  • Yokogawa AQ1210 Series OTDR Multi Field Tester
  • Yokogawa AQ1000 OTDR Optical Time Domain Reflectometer
  • YOKOGAWA WT1801R series precision power analyzer communication interface
  • YOKOGAWA DLM3034HD/DLM3054HD High Definition Oscilloscope
  • YOKOGAWA AQ23011A/AQ23012A Modular Framework Equipment
  • YOKOGAWA DLM3054HD Mixed Signal Oscilloscope
  • YOKOGAWA CW500 Power Quality Analyzer
  • YOKOGAWA CA500/CA550 Multi functional Process Calibration Instrument
  • YOKOGAWA AQ7420 High-Resolution Reflectometer
  • YOKOGAWA FG410/FG420 arbitrary waveform editor
  • Yokogawa Model 701905 Conversion Cable
  • YOKOGAWA MY600 Digital Insulation Resistance Tester
  • YOKOGAWA AQ7290 Series Optical Time Domain Reflectometer OTDR
  • YOKOGAWA LS3300 AC Power Calibrator
  • Yokogawa AQ6377E Optical Spectrum Analyzer Remote Control
  • Yokogawa AQ6361 Optical Spectrum Analyzer
  • Yokogawa IS8000 Integrated Software ECU Monitoring and Synchronization Function
  • Yokogawa ROTAMASS TI Coriolis Mass Flow Meter
  • Yokogawa ROTOMETER RAMC Metal Variable Area Flow Meter
  • Yokogawa SL1000 high-speed data acquisition unit input module
  • ​Yokogawa FLXA402T turbidity and chlorine liquid analyzer Installation and wiring
  • Yokogawa WTB10-DO Series Dissolved Oxygen Measurement System Terminal Box
  • Yokogawa Model 702928 PBD0200 Differential Probe
  • YOKOGAWA ADMAG TI Series AXW Electromagnetic Flow Meter (25-450mm) Installation and Operation
  • YOKOGAWA ADMAG TI series AXW electromagnetic flowmeter (25-1800mm)
  • YOKOGAWA DO30G Dissolved Oxygen Sensor
  • YOKOGAWA SC4AJ Conductivity Sensor
  • YOKOGAWA SC210G Conductivity Detector
  • Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)
  • Yokogawa OR8EFG KCl filled ORP sensor (IM12C07J01-01E)
  • YOKOGAWA FU24 pH/ORP Composite Sensor with Pressure Compensation (IM 12B06J03-03EN-P)
  • Yokogawa SC200 Intelligent Two Wire Conductivity Transmitter System (IM12D08B01-01E)
  • YOKOGAWA CENTUM VP Integrated Production Control System (TI33J01A10-01EN)
  • ABB AO2000-LS25 Laser Analysts User Manual
  • YOKOGAWA FA-M3 positioning module (with analog voltage output)
  • YOKOGAWA FA-M3 Series Basic Modules
  • YOKOGAWA EJA110E Diff erential Pressure Transmitter
  • Zygo 3D Optical Profiler
  • Zygo Mark II 4-inch interferometer system
  • Zygo NewView 9000 3D Optical Contour Analyzer Core Features
  • Zygo NewView 9000 3D Optical Profilometer Technology
  • Zygo Profilometer Standard Operating Procedure
  • Zygo’s Guide to Typical Interferometer Setups
  • ZYGO Laser Interferometer Accessory Guide OMP-0463AM
  • ZYGO MetroPro 9.0 Reference Guide (OMP-0347M)
  • Zygo Device Standard Operating Procedure (SOP)
  • Zygo Verify Laser Interferometer
  • Zygo MicroLUPI interferometer
  • ZYGO ZMI-1000 Displacement Measuring Interferometer System
  • Zygo's ZMI 2000 displacement measurement interferometer system
  • ABB IGCT Technology: A Revolutionary Breakthrough in High Voltage Inverters
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch