+086-15305925923

K-WANG

Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
新闻动态
newS
   
Brand

ABB 5SHY35L4510 Asymmetric Integrated Gate Commutated Thyristor

From: | Author:Wang | Time :2025-05-19 | 172 visit: | Share:

ABB 5SHY35L4510 Asymmetric Integrated Gate Commutated Thyristor

product overview

1. Model and positioning

Model name: ABB 5SHY35L4510 Asymmetric Integrated Gate Commutated Thyristor (abbreviated as Asymmetric IGCT). This product is designed specifically for high-voltage and high-power power electronics applications. With its unique asymmetric structure and advanced integrated gate control technology, it plays a key role in high-voltage direct current transmission (HVDC), flexible alternating current transmission systems (FACTS), high-power motor drives, and other fields. It is the core power semiconductor device for achieving efficient energy conversion and control.

2. Core values

Efficient power processing: With excellent high-voltage and high current blocking and conducting capabilities, it can significantly improve the power transmission efficiency of the power system.

Quick switch feature: It can achieve fast turn-on and turn off, effectively reducing switch losses and improving system dynamic response performance.

Reliability and stability: Adopting advanced manufacturing processes and strict quality control, it can still operate stably under harsh working conditions, extending the service life of the equipment.

Flexible application adaptation: The unique asymmetric design makes it suitable for various complex power electronic topologies, meeting the customized needs of different application scenarios.


Core technical principles

1. Asymmetric structural design

5SHY35L4510 adopts an asymmetric structure, and its forward blocking voltage and reverse blocking voltage capabilities are different. The forward direction can withstand voltages up to 4500V, while the reverse blocking ability is relatively low. This design allows the device to achieve unidirectional current flow in specific circuit topologies without the need for additional anti parallel diodes, simplifying the circuit structure, reducing costs and system complexity, and minimizing additional losses and parasitic parameter effects caused by anti parallel diodes.

2. Integrated Gate Converter Technology (IGCT)

The integrated gate commutated thyristor combines the high voltage and high current characteristics of thyristors with the fast switching capability of transistors. By applying precise control signals through the gate, the device can be quickly turned on and off. The gate drive circuit adopts low inductance design and high-speed signal transmission technology, which shortens the switching time of the device to the microsecond level, effectively reduces switching losses, and improves the operating frequency and efficiency of the system.

3、 Core technical parameters

Positive blocking voltage: 4500V

On state average current: 3500A

Surge current (10ms): 80 on state average current**

Surge current (10ms): 80kA

Opening time: ≤ 3 μ s

Off time: ≤ 15 μ s

Reverse blocking voltage: 80V

Working temperature range: -40 ℃~+125 ℃

Packaging form: pressure bonding packaging, with good heat dissipation and mechanical stability

Dv/dt tolerance: 500V/μ s (typical value)

Di/dt tolerance: 1000A/μ s (typical value)


Core functions

1. High voltage and high current control

In high-voltage direct current transmission systems, 5SHY35L4510 can accurately control the on/off and magnitude of direct current, achieving efficient transmission of long-distance and large capacity electrical energy. In high-power motor drive applications, the starting, speed regulation, and braking processes of the motor can be stably controlled, and the driving power can reach several megawatts, meeting the demand for high-power and high-precision driving in industrial production.

2. Efficient energy conversion

By virtue of its fast switching characteristics and low conduction loss, efficient AC-DC conversion, DC-DC boost/buck and other energy conversion functions are achieved in power electronic converters, increasing the energy conversion efficiency to over 98% and effectively reducing system energy consumption and operating costs.

3. Fault protection and system stability enhancement

Having high di/dt and dv/dt tolerance, it can quickly respond and cut off the fault current in case of short circuit, overvoltage and other faults in the system, prevent the spread of faults, and enhance the stability and reliability of the power system. At the same time, soft switching function is achieved through gate control, reducing voltage and current stress during the switching process, lowering electromagnetic interference (EMI), and improving the overall electromagnetic compatibility of the system.

4. Flexible topology adaptation

The asymmetric structure enables it to adapt to various power electronic topologies, such as three-phase bridge circuits, multilevel converter circuits, etc. In flexible AC transmission systems, it can be applied to devices such as Static Var Compensators (SVC) and Static Synchronous Compensators (STATCOM) to achieve fast reactive power compensation and voltage regulation, improving the power quality and stability of the AC power grid.


Typical application scenarios

1. High Voltage Direct Current Transmission (HVDC)

In long-distance high-voltage direct current transmission projects, 5SHY35L4510 serves as the core component of the converter valve, undertaking the task of converting AC and DC electrical energy. For example, in cross sea transmission and large-scale power allocation projects across regions, stable transmission of electricity at the level of thousands of kilometers and millions of kilowatts can be achieved, reducing transmission losses, improving energy utilization efficiency, and ensuring the reliability and stability of power supply.

2. Flexible AC Transmission System (FACTS)

Applied to devices such as Static Var Compensators (SVC) and Static Synchronous Compensators (STATCOM), it monitors real-time changes in grid voltage and reactive power, quickly adjusts reactive power output, stabilizes grid voltage, improves power quality, and enhances the transmission capacity and stability of the grid. Especially in scenarios with large fluctuations in power grid load and large-scale integration of new energy, it effectively alleviates the problems of voltage fluctuations and frequency offset in the power grid, and enhances the power grid's ability to absorb new energy.

3. High power motor drive

In high-power motor drive systems in industries such as steel, mining, and shipbuilding, such as main drive motors for rolling mills, mining hoist motors, and ship propulsion motors, efficient speed regulation and precise control of motors are achieved. By precisely adjusting the input voltage and frequency of the motor, it can maintain the optimal operating state of the motor under different working conditions, improve production efficiency, reduce equipment energy consumption, and reduce mechanical shock during motor starting and braking processes, thereby extending the service life of the motor and transmission system.

4. New energy grid connection

In the grid connection stage of new energy generation systems such as wind power and photovoltaic, it is used in the inverter to achieve stable conversion and grid connection control of electrical energy. Being able to quickly respond to power fluctuations in new energy generation, achieve smooth connection with the power grid, improve the reliability and grid efficiency of new energy generation, and help build a clean and efficient energy system.


Key advantages

1. High performance indicators

The high forward blocking voltage, large steady-state current, and fast switching characteristics make it perform excellently in high-voltage and high-power applications, meeting the stringent performance requirements of power systems. Compared with traditional thyristor devices, the power processing capacity is increased by more than 30%, and the switching loss is reduced by more than 20%.

2. High reliability and long lifespan

Adopting advanced chip manufacturing processes and packaging technologies, the chips are made of high-quality silicon materials and optimized doping processes to improve the voltage resistance and current carrying capacity of the devices; The packaging structure has good heat dissipation performance and mechanical strength, and can withstand vibration, impact, and temperature changes under harsh environmental conditions. After rigorous aging testing and reliability verification, the mean time between failures (MTBF) exceeds 100000 hours, reducing equipment maintenance costs and downtime.

3. Advantages of system integration

Asymmetric structure and integrated gate control technology simplify circuit design, reduce the number of peripheral devices, and lower system costs and volume. At the same time, we provide comprehensive solutions for driving and protection circuits, which facilitate integration with other power electronic devices and systems, shorten product development cycles, and improve system design efficiency.

4. Green and energy-saving

The low switching loss and conduction loss characteristics effectively reduce system energy consumption, which is in line with the development trend of green energy conservation. In large-scale applications, it can significantly reduce the energy consumption and carbon emissions of the power system, providing strong support for enterprises to achieve energy-saving and emission reduction goals.


Installation requirements

Environmental conditions: The installation environment should be kept dry, clean, and free of corrosive gases and dust. The ambient temperature should be controlled within the range of -40 ℃ to+50 ℃, and the relative humidity should not exceed 95% (without condensation).

Electrical connection: Strictly follow the electrical schematic for wiring, ensure correct connection of positive and negative poles, secure and reliable wiring terminals, and avoid loose connections causing poor contact and heating. At the same time, to reduce electromagnetic interference, the gate control signal line should use shielded cables and maintain an appropriate distance from the main circuit cable.

Heat dissipation design: The device needs to be installed on an efficient heat dissipation device, such as a radiator or water-cooled heat dissipation module. Apply uniform thermal grease between the device and the heat sink during installation to ensure good heat conduction. The heat dissipation capacity of the heat sink should meet the heat dissipation requirements of the device at maximum power consumption, ensuring that the operating junction temperature of the device does not exceed the rated value.

ABB GVC736BE101 3BHB019719R0101 ACS 6000 IGCT - 雄霸工业


  • HIMA X-AO1601 Termination Boards
  • HIMA X-AI3251 Digital Output Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Termination Board
  • HIMA X-DI6451 Digital Input Module
  • XYCOM 96574-001 - Circuit Board Card Rev A
  • XYCOM 99212A-001 - Control Board Card CPX-7
  • XYCOM 99222-001 - Circuit Board Card Rev A
  • XYCOM 97780-002 - Circuit Board for Operator Panel Screen
  • XYCOM XVME-164/1 - Circuit Board 61116
  • XYCOM CMX-7D - Power Supply Circuit Board PN99865-001
  • XYCOM 10330-00800 - Digital I/O Board Circuit Card
  • XYCOM 8450-HU - Husky Monitor 98916-001
  • XYCOM XVME-428/2 - IASCM Communication Board
  • XYCOM 3512KPT - Industrial PC Operator Interface
  • XYCOM Checkpoint Cognex - Inspection Machine Vision Camera
  • XYCOM XVME-080 - IPROTO Intelligent Prototyping Module
  • XYCOM IV-1653 - Ironics VMEbus CRT Circuit Board
  • XYCOM M032000220 - Control Board
  • XYCOM 4850A - Operator Interface Panel 91855-001
  • XYCOM 9462 - HMI Operator Interface Panel 9462-016214001
  • XYCOM 9465 KPM - Monitor Industrial PC 9465-219114103
  • XYCOM 9486 - Monitor-Miniflex Portrait 9486-0343
  • XYCOM MVME-490/1 - Circuit Board Tegal 6550 Etcher
  • XYCOM 1300 - Node Module 1300-000100000
  • XYCOM 3510 T - Operator Interface
  • XYCOM 3512 KPM - Operator Interface Part No 3512-A1F114103
  • XYCOM 4615KPM - Operator Interface
  • XYCOM 8320 - Operator Interface Display Panel 94321-002
  • XYCOM 4105 - Operator Interface P/N 91904-001
  • XYCOM PM101683E - Operator Interface PM101683 E
  • XYCOM 301993 - Operator Panel 89086-501 Raycon
  • XYCOM 2000 - Operator Panel 97957-001
  • XYCOM 9410KP - Operator Touchscreen HMI 51338-STN
  • XYCOM 9987 - Operator Workstation CPU Board
  • XYCOM 94144-002 - CPU Board Rev V
  • XYCOM 9487 - Programmable Interface HMI Panel PC
  • XYCOM 70956-411 - PLC Module Card Ethernet Card MESA 4I29X
  • XYCOM PM101587 - Operator Panel
  • XYCOM XT1502-BB-RB - Display Panel XT 1502
  • XYCOM PM3510 - Operator Interface Terminal
  • XYCOM PM8450 - Operator Interface Repair Evaluation
  • XYCOM PM8480 - Operator Interface PM101269
  • XYCOM 8000-SKM - Power Supply Board Module
  • XYCOM 510084 - Power Supply Board
  • BENTLY NEVADA 3500/15 133292-01 Power Supply Module
  • ABB PM877 3BDH000777R1 Central_Unit Controller
  • GE Hydran M2-X Enhanced Monitoring
  • ABB REG316 1mrk000809-GA Numerical Generator Protection
  • ABB RED670 1MRK004810 Line differential protection
  • GE SR750-P5-G5-S5-HI-A20-R-E Feeder protection system
  • ABB PFTL301E-1.0KN 3BSE019050R1000 PillowBlock Load cells
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module
  • Kollmorgen S64001 - Servo Drive
  • Kollmorgen CR03200-000000 - Servo Drive
  • Kollmorgen 6SM57M-3000+G - Servo Motor
  • Kollmorgen BDS4 - Servo Drive
  • Kollmorgen AKD-P00306-NBEC-000 - Servo Drive
  • Kollmorgen AKD-B01206-NBAN-0000 - Servo Drive
  • Kollmorgen STP-57D301 - Stepper Motor
  • Kollmorgen 6SM37L-4.000 - Servo Motor
  • Kollmorgen 44-10193-001 - Circuit Board
  • Kollmorgen PRDR9SP24SHA-12 - Board
  • Kollmorgen PRD-AMPE25EA-00 - Servo Drive
  • Kollmorgen DBL3N00130-0R2-000-S40 - Servo Motor
  • Kollmorgen S406BA-SE - Servo Drive
  • Kollmorgen AKD-P00607-NBEI-0000 - Servo Drive
  • Kollmorgen AKD-P01207-NBEC-0000 - Servo Drive
  • Kollmorgen CR03550 - Servo Drive
  • Kollmorgen VSA24-0012/1804J-20-042E - Servo Drive
  • Kollmorgen N2-AKM23D-B2C-10L-5B-4-MF1-FT1E-C0 - Actuator
  • Kollmorgen 04S-M60/12-PB - Servo Drive
  • Kollmorgen H33NLHP-LNW-NS50 - Stepper Motor
  • Kollmorgen A-78771 - Interlock Board
  • Kollmorgen AKM43E-SSSSS-06 - Servo Motor
  • Kollmorgen AKD-P00607-NBEC-0000 - Servo Drive
  • Kollmorgen E21NCHT-LNN-NS-00 - Stepper Motor
  • Kollmorgen cr10704 - Servo Drive
  • Kollmorgen d101a-93-1215-001 - Motor
  • Kollmorgen BDS4A-203J-0001-EB202B21P - Servo Drive
  • Kollmorgen MCSS23-6432-002 - Connector
  • Kollmorgen AKD-P01207-NACC-D065 - Servo Drive
  • Kollmorgen CK-S200-IP-AC-TB - I/O Adapter and Connector
  • Kollmorgen CR10260 - Servo Drive
  • Kollmorgen EC3-AKM42G-C2R-70-04A-200-MP2-FC2-C0 - Actuator
  • Kollmorgen BDS5A-206-01010-205B2-030 - Servo Drive
  • Kollmorgen s2350-vts - Servo Drive
  • Kollmorgen AKM24D-ANC2DB-00 - Servo Motor