+086-15305925923

K-WANG

Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
新闻动态
newS
   
Brand

Rolls-Royce UN930 Digital Display Controller 24V

From: | Author:Wang | Time :2025-04-25 | 69 visit: | Share:

Rolls-Royce UN930 Digital Display Controller 24V

Brand Background

Rolls-Royce, as an industry benchmark in the field of high-end manufacturing, occupies a pivotal position in the development of global industry. Since its establishment, it has always driven development by innovation, breaking through technological bottlenecks in the fields of aero-engines, marine power systems and energy solutions, and shaping many products of epoch-making significance. In the field of shipbuilding and shipping, Rolls-Royce, with its profound technological heritage and extreme pursuit of quality, has been deeply engaged in the research and development of marine automation and intelligent equipment, and has provided the global marine industry with a full chain of solutions from power systems to control systems. Its products are not only widely used in commercial ships and luxury cruise ships, but also play a key role in special ships, such as research vessels and warships, etc. With excellent performance and reliability, Rolls-Royce has won the high trust of global customers, and has become a synonym of advanced technology and high quality in the marine industry.


Specifications

Electrical specifications

Adaptation of power supply system: UN930 Digital Display Controller is specially designed for the DC power supply system of marine vessels, precisely adapting to the standard voltage of 24V DC with a wide voltage adaptation range of ±20%. This feature enables it to easily cope with voltage fluctuations under the ship's starting and sudden load changes. For example, when the power grid voltage drops instantly due to the startup of high-power equipment, the controller's built-in voltage regulator circuit and power management module can automatically adjust to ensure its stable operation, avoiding data loss or control failure due to unstable voltage. In addition, the power input port adopts an anti-reverse connection design, effectively preventing equipment damage caused by wiring errors and enhancing the safety of installation and use.


Communication interface and protocol: The controller is equipped with an RS232 communication interface, which follows the EIA-232 standard protocol and supports point-to-point serial communication. Although the theoretical maximum transmission rate of RS232 is 19.2kbps, and the transmission distance is generally not more than 15 metres, it has good compatibility and stability in short-distance, relatively low real-time requirements of equipment communication scenarios within the ship. For example, when connecting with sensors, small actuators and other devices in the ship's cabin, it can reliably transmit device status data and control commands. At the same time, the controller supports custom communication protocols, and users can set parameters such as data transmission format, baud rate, and checksum method according to actual needs, so as to achieve seamless connection with equipment from different manufacturers.



Physical Specifications

Compact design: UN930 adopts a highly integrated design concept and its overall dimensions are precisely optimised, with a length, width and height of only [specific dimensions] and a weight of only 1.640 kg. This compact and lightweight shape enables it to be flexibly installed in a variety of space-constrained locations inside the ship, such as narrow control cabinets, equipment operation panels, cabin corners, etc. It supports rail mounting and installation. It can be mounted on both rail and panel mounting modes. Rail mounting can be quickly and conveniently fixed on the standard DIN rail, which is convenient for the centralised layout and maintenance of the equipment; while panel mounting embeds the controller into the equipment panel by means of the special fixing clips and screws to achieve an integrated design, which enhances the overall aesthetics and convenience of operation.

Durable protection performance: the controller shell is made of high-strength engineering plastics and metal composite materials of Norwegian origin, with excellent mechanical strength and impact resistance. After rigorous mechanical vibration test and impact test, it can withstand the continuous vibration and sudden impact generated by engine operation and wave impact during ship navigation. In terms of protection level, it reaches IP54 standard, which can effectively prevent dust from entering into the internal circuit, and at the same time, it can resist water splashing from all directions, so it can adapt to the harsh working environment of humid, dusty and oily cabin of the ship. In addition, the surface of the enclosure has been specially treated with good corrosion resistance, which can withstand the erosion of corrosive gases and liquids in the cabin for a long time and extend the service life of the equipment.


Performance characteristics

High-definition digital display

Precise and clear information presentation: The UN930 is equipped with a [size] high-resolution LCD screen with TFT (thin-film transistor) technology and 16-bit colour display capability, which can present rich and detailed image and text information. With a screen resolution of [specific resolution value], it can display various equipment operating parameters, such as voltage, current, temperature, pressure, speed, etc., in a clear and accurate manner, with an accuracy of up to two decimal places. For key parameters, eye-catching colours and large fonts are used to highlight them, ensuring that operators can read them quickly even at a distance or under complex lighting conditions. At the same time, the display supports the backlight adjustment function, which can automatically or manually adjust the brightness according to the ambient light intensity. At night or in a dimly lit cabin, the brightness of the screen can be reduced to avoid blinding the eyes; in a strong light environment, the brightness can be enhanced to ensure that the information is clearly visible.


Humanised display interface design: the display interface adopts modular design concept and is divided into four main parts: parameter display area, status indication area, operation menu area and alarm prompt area. Parameter display area dynamically displays the real-time operating parameters of the equipment, supporting a variety of data display forms, such as numbers, charts, dashboards, etc., which is convenient for the operator to intuitively understand the operating status of the equipment; status indication area through different colours of the indicators and icons, intuitively show the working status of the equipment, such as normal operation, standby, failure, etc.; operation menu area adopts a hierarchical menu structure, the operation logic is concise and straightforward, and the operation can be easily accessed to all levels of the menu, to carry out the operation of the alarm prompt area through the keys. The operation menu area adopts a hierarchical menu structure with simple and clear operation logic, through key operation, it can easily enter the menus at all levels to carry out operations such as parameter setting, function configuration, data query, etc. Alarm prompting area reminds the operator of the flashing icons and sound alarms in case of abnormalities of the equipment, and at the same time, it displays the detailed alarm information, including the type of alarm, the time of occurrence, and the possible reasons, etc., which can help to locate and solve the problems quickly.



Powerful and reliable control function

Accurate and stable equipment control: UN930 has a built-in high-performance microprocessor and specialised control chip with powerful computing and control capabilities. Through preset control algorithms and logic programmes, it is able to accurately control the connected marine equipment. For example, in the control of ship lighting system, it can realise independent switching control and brightness adjustment for each lamp or a group of lamps with an accuracy of up to 1%. For the dimming function, PWM (Pulse Width Modulation) technology is used to achieve smooth, flicker-free brightness adjustment by adjusting the duty cycle of the pulse signal, which not only meets the lighting needs of different scenes, but also saves energy effectively. In terms of ventilation system control, the speed of the fan can be automatically adjusted according to the sensor data of cabin temperature, humidity, harmful gas concentration, etc., so as to match the ventilation volume with the actual demand, and maintain the cabin air quality and environmental comfort.


Flexible and diversified control modes: It supports three modes of manual control, automatic control and remote control to meet the operational needs in different scenarios. In manual control mode, the operator can operate the equipment directly through the buttons and knobs on the controller panel, which is suitable for equipment debugging, emergency handling, etc. In automatic control mode, the controller automatically completes the control of the equipment according to the preset procedures and sensor feedback data, realising the intelligent operation of the equipment. For example, in the cabin ventilation system of a ship, when the temperature sensor detects that the cabin temperature exceeds the set threshold, the controller automatically starts the fan and adjusts the fan speed to the appropriate speed; when the temperature drops to the normal range, it automatically reduces the fan speed or stops the operation. Remote control mode is connected to the ship's central control system or remote monitoring terminal through RS232 communication interface, so that the operator can carry out real-time monitoring and control of the equipment on the bridge, in the monitoring room or in other remote locations, thus realising centralised management and remote operation and maintenance of the ship's equipment.



Intelligent data processing and management

Real-time Data Acquisition and Monitoring: UN930 has powerful data acquisition capability, which can simultaneously access multiple sensor signals and support analogue input (e.g. voltage, current, temperature, pressure, etc.) and digital input (e.g. equipment status switch signal). The data acquisition frequency can be up to 100 times / sec, which can obtain real-time and accurate equipment operation data. The collected data is pre-processed by filtering, amplification, A/D conversion, etc., and then transmitted to the microprocessor inside the controller for analysis and processing. At the same time, the controller has a built-in data buffer, which can temporarily store the collected data to ensure that the data is not lost in case of communication interruption or system failure. Through real-time data monitoring, abnormalities in equipment operation, such as parameter overruns and equipment failures, can be detected in a timely manner and alarm signals can be issued immediately.


Fault diagnosis and predictive analysis: Based on the collected equipment operation data, UN930 adopts advanced fault diagnosis algorithms and models, which can quickly locate and diagnose equipment faults. When an abnormality occurs in the equipment, the controller determines the type and cause of the fault through the comprehensive analysis of multiple related parameters, combined with the preset fault rule base, and displays detailed fault diagnosis information on the display. For example, in the ship pump system, when the pump current is detected to be abnormally high, the outlet pressure drops and the running time exceeds a certain threshold, the controller can diagnose the pump may be clogged or impeller damage and other faults, and give the corresponding maintenance recommendations. In addition, the controller also has a fault prediction function, through the trend analysis of equipment historical data and real-time data, the use of machine learning algorithms to establish equipment health model, predict the future operating state of the equipment and possible failures, issued in advance warning, so that maintenance personnel can carry out preventive maintenance before the failure occurs, reducing equipment downtime and maintenance costs.


Data storage and query management: Built-in large-capacity non-volatile memory can store up to [specific time] of equipment operation data, operation records and fault information. The data storage adopts cyclic overwriting method, when the storage space is insufficient, the earliest data will be overwritten automatically to ensure the integrity of the latest data. Operators can conveniently query the historical data through the buttons on the controller panel or the communication interface. It supports filtering and searching by time, equipment type, parameter type, etc. The query results can be shown on the display in the form of tables or charts, and can also be exported to an external storage device or computer through the communication interface for further analysis and processing. These historical data not only provide an important basis for equipment maintenance and management, but also can be used to optimise equipment operating parameters, improve control strategies and enhance the overall operating efficiency of the ship.

Digital Display Controller | Display Controller 4-20ma | 4-20ma Level ...


  • ABB CAI04 - Analog Input Module
  • ABB PM866-2 3BSE050201R1 - Process Manager Module
  • ABB CP405 A0 1SAP500405R0001 - Communication Processor
  • ABB R474A11XE HAFAABAAABE1BCA1XE - Protection Relay
  • ABB REF542PLUS 1VCR007346 - Protection Relay
  • ABB REF542PLUS 1VCF752000 - Protection Relay
  • ABB PPD113B03-26-100100 3BHE023584R2625 - Power Distribution Module
  • ABB PCD232A 3BHE022293R0101 - Process Control Module
  • ABB PFEA113-65 3BSE050092R65 - Process Control Module
  • ABB XVC768102 3BHB007211R102 - Control Module
  • ABB XVC767AE102 3BHB007209R0102 - Control Module
  • ABB CI857K01 3BSE018144R1 - Communication Interface Module
  • ABB 3ASC25H219B DATX133 - Control System Module
  • ABB 3ASC25H208 DATX100 - Control System Module
  • ABB 3ASC25H214 DATX130 - Control System Module
  • ABB 3ASC25H204 DAPU100 - Control System Module
  • ABB 3ASC25H216A DATX132 - Control System Module
  • ABB LWN2660-6 - Communication Module
  • ABB ICSE08B5 FPR3346501R1012 - Interface Module
  • ABB 1MRK00008-KB - Protection Relay Component
  • ABB UAD155A0111 3BHE029110R0111 - Control Module
  • ABB PU515A 3BSE032401R1 - Power Unit Module
  • ABB TU810V1 3BSE013230R1 - Terminal Unit
  • ABB XO08R2 1SBP260109R1001 - Output Module
  • ABB 3BHL000986P0006 - Communication Module
  • ABB SC540 3BSE006096R1 - System Controller
  • ABB REF615C_E HCFDACADABC2BAN11E - Protection Relay
  • ABB 5SHY4045L0001 3BHB018162R0001 3BHE009681R0101 GVC750BE101 - IGBT Power Module System
  • ABB P4LQA HENF209736R0003 - Power Module
  • ABB FENA-11 - Network Module
  • ABB COM0003 2RAA005844A0006A - Communication Module
  • ABB AIM0006 2RCA021397A0001F - Analog Input Module
  • ABB REF615C_C HCFFAEAGANB2BAN1XC - Protection Relay
  • ABB S-073N 3BHB009884R0021 - Power Module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE - Protection Relay
  • ABB TP830 3BSE018114R1 - Touch Panel
  • ABB 5SHX2645L0004 3BHL000389P0104 3BHB003154R0101 5SXE04-0150/GVC707AE01 - IGBT Power Module System
  • ABB DSAI146 3BSE007949R1 - Analog Input Module
  • ABB LC-608 - Control Module
  • ABB TK803V018 3BSC950130R1 - Terminal Module
  • ABB RF522 3BSE000743R1 - Field Communication Module
  • ABB DSRF197 3BSE019297R1 - System Module
  • ABB DSAO120A 3BSE018293R1 - Analog Output Module
  • ABB DSDP170 57160001-ADF - Process Control Module
  • ABB DSBC176 3BSE019216R1 - System Module
  • ABB DSDO115A 3BSE018298R1 - Digital Output Module
  • ABB DSDI110AV1 3BSE018295R1 - Digital Input Module
  • ABB BC810K01 3BSE031154R1 - Base Controller
  • ABB 5SHY3545L0010 3BHB013088R0001 3BHE009681R0101 GVC750BE101 - IGBT Power Module System
  • ABB 81943A041-1 - Industrial Component
  • ABB PM865K01 3BSE031151R1 - Process Manager Module
  • ABB SA168 3BSE003389R1 - System Module
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 - IGBT Power Module System
  • ABB TP853 3BSE018126R1 - Touch Panel
  • ABB REM545AG228AAAA - Protection Relay
  • ABB CI626A 3BSE005029R1 - Communication Interface Module
  • ABB NDCU-12C NDCU-12CK - Network Control Unit
  • ABB REM615C_D HCMJAEADAND2BNN1CD - Protection Relay
  • ABB IBA 940143201 - Interface Module
  • ABB PFSK151 3BSE018876R1 - Process Control Module
  • ABB IDPG 940128102 - Display Module
  • ABB PP825 3BSE042240R1 - Panel Module
  • ABB OCAH 940181103 - Control Module
  • ABB OCAHG 492838402 - Control Module
  • ABB TP857 3BSE030192R1 - Touch Panel
  • ABB PP865A 3BSE042236R2 - Panel Module
  • ABB CI854A-EA 3BSE030221R2 - Communication Interface Module
  • ABB SCYC51020 58052582H - System Control Module
  • ABB SCYC51090 58053899E - System Control Module
  • ABB SCYC51010 58052515G - System Control Module
  • ABB CB801 3BSE042245R1 - Communication Module
  • ABB SCYC51040 58052680E - System Control Module
  • ABB 5SHY4045L0001 3BHB018162R0001 - IGBT Power Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 - IGBT Power Module System
  • ABB RMU811 - Remote Monitoring Unit
  • ABB RFO810 - Field Output Module
  • ABB CS31 - Control System
  • ABB TVOC-2-240 1SFA664001R1001 - Voltage Controller
  • ABB SDCS-AMC-CLAS2 - Drive System Module
  • ABB LDSTA-01 - Display Module
  • ABB GJR5252300R3101 07AC91H - Control Module
  • ABB GJR5252300R3101 07AC91F - Control Module
  • ABB TB711F 3BDH000365R0001 - Terminal Base
  • ABB PM783F 3BDH000364R0001 - Process Manager Module
  • ABB CM772F 3BDH000368R0001 - Communication Module
  • ABB TU715F 3BDH000378R0001 - Terminal Unit
  • ABB DC732F 3BDH000375R0001 - DC Controller
  • ABB TTH300 - Terminal Module
  • ABB PFEA111-65 3BSE050091R65 - Process Control Module
  • ABB UNS3670A-Z V2 HIEE205011R0002 - Power Electronics Module
  • ABB RC527 3BSE008154R1 - Remote Controller
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 - IGBT Power Module System
  • ABB PM864AK01 3BSE018161R1 - Process Manager Module
  • ABB DSDP140A - Process Control Module
  • ABB UBC717BE101 3BHE021887R0101 - Power Electronics Module
  • ABB PPC380AE01 HIEE300885R0001 - Power Controller
  • ABB UFC718AE01 HIEE300936R0001 - Power Electronics Module
  • ABB KUC720AE01 3BHB003431R0001 3BHB000652R0001 - Control Unit System
  • ABB DSAI130A 3BSE018292R1 - Analog Input Module
  • ABB TP854 3BSE025349R1 - Touch Panel
  • ABB 5SHY3545L0016 3BHB019719R0101 GVC736BE101 5SXE06-0160 - IGBT Power Module System
  • ABB 07KT97 GJR5253000R4270 - Control Terminal
  • ABB 07KT98 GJR5253100R4278 - Control Terminal
  • ABB 07KT98 GJR5253100R0278 - Control Terminal
  • ABB PFTL101B 5.0KN 3BSE004191R1 - Force Sensor
  • ABB 5SHX1445H0002 3BHL000387P0101 - IGBT Power Module
  • ABB 3HNM07686-1 3HNM07485-1/07 - Motor Module
  • ABB GRBTU 3BSE013175R1 - Terminal Unit
  • ABB DSMB127 57360001-HG - System Module
  • ABB DSBB110A 57330001-Y - System Module
  • ABB DSCS131 57310001-LM - System Module
  • ABB DSCA114 57510001-AA - System Module
  • ABB PFSK130 3BSE002616R1 - Process Control Module
  • ABB PFSK164 3BSE021180R1 - Process Control Module
  • ABB PFSK162 3BSE015088R1 - Process Control Module
  • ABB PFSK160A 3BSE009514R1 - Process Control Module
  • ABB DSBC172 57310001-KD - System Module
  • ABB DSMC112 57360001-HC - System Module
  • ABB DSRF180A 57310255-AV - System Module
  • ABB DSTC175 57310001-KN - Terminal Controller
  • ABB DSSB140 48980001-P - System Module
  • ABB UAC389AE02 HIEE300888R0002 - Control Module
  • ABB UNS0881a-P,V1 3BHB006338R0001 - Power Electronics Module
  • ABB KUC755AE105 3BHB005243R0105 - Control Unit
  • ABB KUC755AE105 3BHB005243R0105 - Control Unit
  • ABB PM783F 3BDH000364R0002 - Process Manager Module
  • ABB 5SHY3545L0009 3BHB013085R0001 3BHE009681R0101 GVC750BE101 - IGBT Power Module System
  • ABB LXN1604-6 3BHL000986P7000 - Communication Module