+086-15305925923

K-WANG

Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
新闻动态
newS
   
Brand

YOKOGAWA FA-M3 positioning module (with analog voltage output)

From: | Author:Wang | Time :2025-10-29 | 364 visit: | Share:

YOKOGAWA FA-M3 positioning module (with analog voltage output)

Basic information and important statements

1. Applicable product and document identification

Applicable products: FA-M3 series unlimited range multi controller, specific models F3NC51-0N (single axis positioning module) and F3NC52-0N (dual axis positioning module), with the function of positioning control with analog voltage output.

Document identification: Document number IM 34M6H58-01E, document model code DOCIM. This number must be referenced for communication and additional manual purchases; The media number is the same as the document number (CD version), and the copyright belongs to Yokogawa Electric in 1998.

2. Important statement

Manual transmission: It needs to be transmitted to the end user. Before using the module, it is necessary to read the manual thoroughly to fully understand the product.

Content limitation: The manual only describes product functions and does not guarantee compatibility with specific user purposes; Without permission, partial or complete transcription or reproduction is not allowed; The content may change without prior notice.

Error feedback: Although we try our best to ensure the accuracy of the content, if any errors or omissions are found, please contact the nearest representative office or sales office of Yokogawa Electric.

Disclaimer: Yokogawa Electric only guarantees the product according to the separately provided warranty terms and is not responsible for direct/indirect losses caused by user use or unforeseeable defects of the product; The software is only for use on designated computers and is prohibited from reverse engineering, unauthorized transfer, etc.

Safety precautions

1. Definition of safety symbols

Meaning and usage scenarios of symbol types

CAUTION (product/manual) should follow the instructions in the manual to avoid personal injury, equipment damage, and other hazards such as electric shock prevention; The symbol in the manual is also used to indicate key information for understanding operations and functions

Warning (manual only): Please refer to the manual instructions to prevent hardware/software damage or system failure

TIP (manual only) provides information to supplement the current topic

SEE ALSO (manual only) indicates other sources of information to be referenced

2. Core security requirements

Grounding requirements: The functional grounding terminal (FG) must be grounded before use, and it must independently comply with Japanese Industrial Standards (JIS) Class 3 grounding, with a grounding resistance not exceeding 100 Ω, and avoid being grounded together with high-voltage power lines.

Installation environment: Avoid installation in locations with direct sunlight, temperatures exceeding 0-55 ℃, humidity exceeding 10% -90% (prone to condensation), corrosive/flammable gases, and mechanical vibrations/impacts.

Operation specification: The power must be turned off before installing/disassembling the module; Tighten the installation screws and terminal screws of the module to ensure that the interconnection cable connectors are secure and checked before powering on; An emergency stop circuit needs to be constructed using external relays to interlock with the controller status (stop/run); Avoid cleaning with solvents such as paint thinner, only wipe with a damp cloth or neutral cleaner.

Component replacement and modification: Only company designated components can be used for replacement, and it is prohibited to modify or add components to the interior of the product; The CPU module contains a built-in battery and should be stored in high temperature (storage temperature -20-75 ℃) and high humidity environments to prevent a sudden decrease in battery life.

Electrostatic protection: Before operating in a dry environment, touch the grounded metal to release static electricity.

Product specifications

1. General specifications (core parameters)

Project F3NC51-0N (single axis) F3NC52-0N (dual axis) Description

Control the number of axes: 1 axis and 2 axes-

Control method based on encoder feedback semi closed loop control based on encoder feedback semi closed loop control-

Analog voltage output -10~10V -10~10V for speed control commands

Encoder compatibility incremental encoder (A/B phase, RS422 differential input, maximum 2Mpps at 4x); Absolute encoders (Yokogawa ∑ series, Sanyo Electric Manchester encoder series, etc., see Section 2.4 for details) are the same as single axis encoders-

Control mode position control, speed control, speed position control mode switching are the same as single axis-

Position control function axis independent interpolation, multi axis linear interpolation, dual axis arc interpolation; Pulse range -134217728~134217727 pulses; Pulse frequency ranging from 0.1 to 200000 pulses per second; Support absolute/relative position selection, operation in the path, target position/speed change during operation, manual pulse generator axis stepping with single axis-

Pulse frequency range for speed control function -2000000 to 2000000 pulses per second; Support speed changes during operation on the same single axis-

Acceleration and deceleration methods include trapezoidal, two-stage, and S-shaped (three-stage) tracking, with single axis acceleration and deceleration times ranging from 0 to 32767ms each

Origin search can be defined through the origin setting value and external triggering; Search speed: Users can set the same single axis-

External contact input limit switch, driver alarm, origin, external trigger, universal input, emergency stop contact are the same as single axis 24V DC, 4.1mA

External contact output servo ON, driver reset, brake OFF contacts are the same as single axis 24V DC, 0.1A

Data backup is handled by the CPU module on the same single axis-

Start time maximum 6ms maximum 6ms-

Current consumption 5V DC, 390mA 5V DC, 400mA-

External power supply 24V DC, 10mA 24V DC, 10mA-

External wiring 40 pin connector (1) 40 pin connector (2)-

Dimensions: 28.9 (width) x 100 (height) x 83.2 (depth) mm (excluding protrusions) Same as single axis-

Weight 130g 140g-

2. Model and suffix code

Model code suffix code type remarks

F3NC51-0N single axis position loop control, -10~10V voltage output, maximum speed 2Mpps

F3NC52-0N dual axis position loop control, -10~10V voltage output, maximum speed 2Mpps

3. Applicable encoders

Universal two-phase rotary encoder;

Yokogawa Motor serial absolute encoder (such as ∑ series);

Sanyo Motor serial absolute encoder (such as P series) or compatible models (such as Panasonic MINAS series, Manchester encoded serial transmission).

4. Module components and indicator lights

F3NC51-0N (single axis): RDY indicator light (always on when the internal circuit is normal), ERR1 indicator light (lit when an error occurs), 40 pin connector (connected to external I/O devices such as servo motors and limit switches).

F3NC52-0N (dual axis): RDY indicator light (normally lit), ERR1 indicator light (lit up for axis 1 error), ERR2 indicator light (lit up for axis 2 error), 2 40 pin connectors (corresponding to external device connections for axis 1 and axis 2 respectively).

Function Overview

The core functions of the module revolve around the position control, speed control, and mode switching of the motor, supporting various flexible operations, as follows:

Function Name Core Description Operation Points

The positioning operation is performed according to the instructions of the CPU module. After setting the target position, speed, acceleration and deceleration parameters, the "start operation instruction" relay is triggered. After the positioning is completed, the "positioning end" relay can be set to absolute/relative position; The acceleration and deceleration curves can be trapezoidal, two-stage, or S-shaped; Can set the positioning judgment range and timeout period; Support normal startup or waiting for internal/external trigger startup

Target position change during positioning operation, writing new positioning parameters and triggering the "Target Position Change Request" relay, can synchronously change speed, supports direction change (motor first stops urgently and then locates towards the new target position)-

Speed change during positioning operation, writing new target speed and triggering the "speed change request" relay to achieve real-time speed adjustment-

Speed control writes parameters such as target speed (negative speed corresponds to reverse rotation), acceleration and deceleration time, triggering the "start operation command" relay. The motor continues to rotate and needs to be terminated through "deceleration stop request" or "immediate stop request". Only incremental encoders are supported; Acceleration and deceleration curves are the same as positioning operations; Support normal startup or waiting for internal/external trigger startup

Speed change in speed control. During speed control operation, writing a new target speed and triggering the "speed change request" relay does not support direction change (need to slow down and stop first, then reset direction to start)-

Switching between speed and position control modes: During the operation of speed control, parameters such as target position, speed, acceleration and deceleration are written to trigger the mode switching command. The positioning operation can be set to normal switching or wait for external triggering switching when the instantaneous position is set to "0"; Support detection of Z-phase signal switching (Z-phase polarity and counting frequency need to be set)

Writing parameters such as target speed and acceleration/deceleration time in jog step, triggering the "positive jog step" or "negative jog step" relay. When the relay is disconnected, the motor decelerates and stops according to the parameters, which only takes effect when there are no errors, servo ON, positioning end, position control mode, and no other instructions are executed; Can only be terminated by "stop immediately", cannot be stopped by "slow down"

The emergency stop input module includes one emergency stop input (dedicated to the 1-axis connector, shared by both axes), which is a B-contact input and must be wired. Otherwise, the module will not work and the motor will stop immediately after triggering-

External contact input: 6 external contact inputs, functions can be defined through the "contact input mode" (such as limit, alarm, origin, trigger, etc.), polarity can be set separately, and status can be read through the application program-

External contact outputs 3 external contact outputs (servo ON, brake OFF, driver reset), triggered by corresponding commands, polarity can be set separately, and status can be read through the application program-

The SEN signal output is only used to connect the Yokogawa Motor absolute encoder and request the transmission of absolute value data. Other drivers need to be suspended when connected-

The origin search operation writes parameters such as search direction, speed, mode (contact input detection action), Z-phase edge selection, etc., triggering the "origin search" relay. After detecting the preset external contact input or Z-phase signal, it decelerates and stops. The detection position can be used as the origin (or origin offset value) to adjust parameters in multiple cycles to achieve complex search; In the absolute encoder system, the Yokogawa method can be searched with the incremental encoder, while the Sanyo method cannot be searched

The interrupt function supports "position detection interrupt" (interrupts the CPU when the instruction/encoder position reaches the set value) and "positioning end interrupt" (interrupts the CPU when positioning is completed). Please refer to the CPU manual for handling interrupts-

After triggering the "Manual Pulse Generator Mode ON" in manual pulse generator mode, the motor is controlled by the manual pulse generator, and the ratio of pulse input to motor movement is set by the "Manual Pulse Generator Proportional Value"; Dual axis can be set to this mode simultaneously, and the shared pulse input cannot control the motor through CPU instructions in this mode; Restore position control after mode OFF

Linear interpolation operation simultaneously writes target speed, position, acceleration and deceleration parameters in both axes (with the same acceleration and deceleration time, speed ratio=movement ratio), synchronously triggers the "start operation command" relay, and after each axis completes positioning, the corresponding "positioning end" relay acts-

Starting a new positioning operation during the operation of positioning in the path, the new operation is initiated before the end of the current operation, forming a path overlap (interval in the path), without the need to stop at the middle target position, and supporting direction changes requires determining the start timing through the "remaining deceleration time" status to avoid operation conflicts

The arc interpolation operation writes parameters such as the center position, radius, starting angle, and angle movement in both axes, synchronously triggering the "start operation command" relay. The module generates the arc path through trigonometric functions to ensure that the X/Y axis parameters are consistent (starting angle, angle movement, etc.); When a single axis error occurs, the other axis continues to run, and the program needs to detect the error and stop it

Parameter settings

The module parameters are divided into entrance parameters (usually set only once after power on), startup parameters (reference for instructions such as positioning/speed control execution), origin search related startup parameters, extended instruction parameters, control mode switching parameters, and arc interpolation parameters. The core parameters are as follows:

1. Entrance parameters (key items)

Parameter Name Axis 1 Data Position Axis 2 Data Position Initial Value Range/Description

Positive limit value 001/002 201/202 134217727-134217728~134217727 pulse, set the position limit within the physical stroke

Negative limit value 003/004 203/204-134217728-134217728- (positive limit value -1) pulse

Speed limit value 005/006 205/206 131072000~131072000 (1/65536) pulse/ms, limit path generation speed

Overspeed detection value 007/008 207/208 131072000~131072000 (1/65536) pulse/ms, detecting the actual speed of the motor exceeding the limit

Super acceleration detection value 009/010 209/210 131072000~131072000 (1/65536) pulse/ms/ms, detecting actual motor acceleration exceeding the limit

Deviation error detection value 011/012 211/212 134217727 1~134217727 pulses, detecting that the deviation between the instruction position and the encoder feedback position exceeds the limit

Motor rotation direction 013 213 0 0: Positive speed command voltage corresponds to forward rotation; 1: Positive speed command voltage corresponds to reverse rotation

Encoder specification 018 218 0 0: Universal incremental type; 1: Sanyo Manchester encoding absolute formula; 2: Yokogawa Serial Absolute Formula

Speed/voltage ratio 020/021 220/221 10240 1~2000000 pps/V, calculation formula: (rated motor speed x encoder pulses/minute) ÷ rated voltage

2. Other parameters (core items)

Startup parameters: including target speed, target position, target position mode (absolute/relative), acceleration and deceleration time/mode/parameters, positioning judgment range, timeout time, interpolation mode, startup mode, position detection mode/set value, etc. There is no initial value, which needs to be written before instruction execution.

Origin search parameters: including origin search mode (contact detection action), search direction, Z-phase edge selection, Z-phase pulse count, Z-phase search range, origin offset value, no initial value.

Extended instruction parameters: including extended instruction type (servo ON/OFF, brake ON/OFF, driver reset, etc.), static deviation adjustment, manual pulse generator proportional value, without initial value.

Arc interpolation parameters: including center position, radius, starting angle, angle movement, angle target velocity, acceleration and deceleration time, target position, correction pulse range, without initial values.

3. Example of parameter settings

Taking "motor rated speed 3000rpm, rated voltage 6V, encoder 8192 pulses/rev (4x), ball screw pitch 5mm/rev, operating range -500~1000mm" as an example, the key inlet parameters are calculated as follows:

Positive limit value: 1000mm ÷ 5mm/rev x 8192 pulses/rev=1638400 pulses;

Negative limit value: -500mm ÷ 5mm/rev x 8192 pulses/rev=-819200 pulses;

Speed limit value: (100mm/s ÷ 5mm/rev × 8192 pulses/rev) ÷ 1000 × 65536=10737418 (1/65536) pulses/ms;

Speed/voltage ratio: (3000rpm × 8192 pulses/rev ÷ 60s/min) ÷ 6V=68267 pps/V.

Status and I/O Relay

1. Status monitoring

The module status needs to be read through the CPU module, and the core status items are as follows (2-digit data needs to be read as "low word+high word", some of which are fixed-point data):

Status Name Axis 1 Data Position Axis 2 Data Position Description

Error status 101 301: Store error code when an error occurs, meaningless when there are no errors

Contact input status 103 303 stores the external contact input (including emergency stop) status, with 1 bit corresponding to 1 input and polarity defined by parameters

The current status of the instruction position is the path position generated by module 104/105 304/305, which is not the actual position of the motor and is measured in unit pulses

Encoder Position Current Status 108/109 308/309 Encoder Feedback Motor Actual Position, Unit Pulse

Target position status 112/113 312/313: The target position of the positioning operation (calculated according to the target position mode)

Extended state 114 314 stores operational states (acceleration/constant speed/deceleration, mode waiting, control mode, etc.), parsed bit by bit

Remaining deceleration time 115 315 Remaining deceleration time from positioning to target position, 0=path generation stop, -1=acceleration/uniform speed

2. I/O relay (interface CPU module)

Output relays (32 per axis, F3NC51-0N's 2-axis relay is invalid): The core includes start operation instructions (Y Ⅲ 33/49), extension instructions (Y Ⅲ 34/50), deceleration stop requests (Y Ⅲ 35/51), immediate stop requests (Y Ⅲ 36/52), origin search start (Y Ⅲ 37/53), etc., where III is the FA-M3 slot number where the module is located.

Input relays (32 per axis, F3NC51-0N 2-axis relays are meaningless): The core includes confirmation of start operation instructions (X Ⅲ 01/17), confirmation of extension instructions (X Ⅲ 02/18), confirmation of deceleration stop (X Ⅲ 03/19), end of origin search (X Ⅲ 05/21), end of positioning (X Ⅲ 14/30), error notification (X Ⅲ 12/28), etc.

  • ABB 216AB61 Industrial Control Module for Automation Systems
  • ABB 5SHX1060H0003 High Power Thyristor Module for Industrial Power Control
  • ABB 07KT97H3 PLC Central Processing Unit for Industrial Automation
  • ABB 3BHB005171R0101 Power Semiconductor Module for Industrial Power Systems
  • KEBA E-SP-CCEC/A/22 - Keyboard Panel
  • KEBA ERHL33 - Module
  • KEBA K-FTC-AN/B - Control Panel Board
  • KEBA DO321 1914D-0 - Digital Output Module
  • KEBA T70Q - Teach Pendant
  • KEBA BL272/A / BL272/B - Bus Coupling Module
  • KEBA T70R - Teach Pendant
  • KEBA PRONET-E-20A-K - Servo Drive
  • KEBA T55-RA0-AU0-LK - Mobile HMI KeTop
  • KEBA DO-272/A - Digital Output Module
  • KEBA PS240/A - Power Supply Module
  • KEBA 2134-00393 - Module Code
  • KEBA E-10-ANALOG-SU - Analog Card
  • KEBA 1904D-0 / D1458E - E-10 Analog Card
  • KEBA FM265A - Function Module
  • KEBA CR17910086 - Controller Board
  • KEBA C5G-TP5WC2 - Robot Teach Pendant
  • KEBA PD242A - Power Supply Module
  • KEBA DI-325 - Digital Input Card
  • KEBA C2-TM-240/A - Digital Input Module
  • KEBA D1547C - I/O Bus Coupling Board
  • KEBA CR-092 - Interface Module
  • KEBA 3HAC023195-003 - IRC5 Teach Pendant Cable
  • KEBA KETOP-T150-MA0 - Mobile HMI
  • KEBA KC-P30-EC24011 - Control Module
  • KEBA 1770B-1 - E-8-THERMO Card
  • KEBA T20T-T00-AR0-CE6 - KeTop Terminal
  • KEBA D1633C-1 - CPU Card
  • KEBA HT401-232-8/0 - Teach Pendant
  • KEBA AO-570 - Analog Output Module
  • KEBA T10-mAb-DMV - Handheld Terminal
  • KEBA C70-rqa-AK0-Le - KeTop Teach Pendant
  • KEBA 1918F-0 - Digital Output Board
  • KEBA T10-mAa-DMV - Handheld Terminal
  • KEBA HT2-SCHLUSSELS - Key Switch for HT2
  • KEBA T100-003-CES - HMI Terminal
  • KEBA GVME610IO - I/O Module
  • KEBA HT501-231 - Teach Pendant
  • KEBA E-CG-CONTROL - Graphic Control Card
  • KEBA D1420F - F-SIC-1 Circuit Board
  • KEBA E-ANA-SUB2 - Analog Sub-module
  • KEBA HT401-222-4 - Teach Pendant
  • KEBA II030 - Input Module
  • KEBA T155-M10-AN0-W - KeTop Mobile HMI
  • KEBA CP088-B - Processor Module
  • KEBA HT40123280 - Operating Terminal
  • KEBA HT4222 - Handheld Terminal
  • KEBA H24025369 - Replacement Part
  • KEBA H24024891 - Replacement Part
  • KEBA SR161 - Analog Input Card
  • KEBA 1762A - E-CRT/EL Circuit Board
  • KEBA T50-011-CES-CE5 - Operator Terminal
  • KEBA E-CON-ELD/B/15 - Control Panel
  • KEBA E-8-THERMO - Thermocouple Card
  • KEBA 330/A-1211-20 - Axis Module
  • KEBA T55-maw-AU0-CE6 - Mobile HMI
  • KEBA C150-110-AK0-N - KeTop HMI
  • KEBA HT4-20656 / HT4-221 - Handheld Terminal
  • KEBA 18658-1 - Analog Board
  • KEBA LM64P89 - LCD Display Screen
  • KEBA E-CPU-88-A - CPU Board
  • KEBA D-CE/59718/15 - Control Board
  • KEBA KC-P30-ES2400E2-E00 - Control Module
  • KEBA 3HAC12929-1 - Teach Pendant SX TPU
  • KEBA E-CON-CC100/A - Control Panel Engel
  • KEBA T200-M01-P20-WES7 - Panel PC Windows Embedded
  • KEBA KC-P30-ES2400B2-M0R - KeControl C3 Module
  • KEBA E8ANALOGC - Analog Card
  • KEBA E-CPU-88-B - CPU Board
  • KEBA T55-raw-AU0-CE6 - Mobile HMI
  • KEBA D1633C - CPU Board
  • KEBA T55-MAW-Au0-CE6 - Mobile HMI
  • KEBA 3HAC11266-4 - Teach Pendant Cable
  • KEBA T20e-m00-Br0-C - Handheld Terminal
  • KEBA E-3-ACU-INC - Controller Board
  • KEBA E-PS-24V - Power Supply Module 24V
  • KEBA C55-2aw-1U0-R - Control Unit
  • KEBA T70-qqu-Aa0-LK - KeTop Teach Pendant
  • KEBA PS244 - Power Supply Module
  • KEBA ECPU186B - CPU Circuit Board
  • KEBA E-8-ANALOG/C - Analog Input Card Engel
  • KEBA AT-4041 - KeControl C3 Controller
  • KEBA T50-ADP - Adapter Module
  • KEBA CP088/D - Control Processor Module
  • KEBA CU312 - Central Unit Module
  • KEBA K2-400 SC440/A - Communication Module
  • KEBA CU212 - Power Supply Module
  • KEBA T20T-T00-AR0-C - KeTop Handheld Terminal
  • KEBA HT4014X20B21572 - Teach Pendant
  • KEBA HT4010V4X201K4 - Operating Terminal
  • KEBA HT401/NC-4X20/20844 - Handheld Terminal
  • KEBA RS-091 / RS091A - Remote Station Module
  • KEBA E8THERMOA - Thermocouple Input Card
  • KEBA TI-570 - Temperature Input Module
  • KEBA C35E 10m/79421/02 - KeTop Teach Pendant
  • KEBA T40-001/58599/06 - Teach Pendant
  • KEBA CR17910087 C5G-GTP5 - Controller Board
  • KEBA T20E-R00-AR0-C - Handheld Terminal
  • KEBA 3HAC023195-001 /02 - Teach Pendant Unit
  • KEBA AR281 - Analog Input Module Engel
  • KEBA D3-DA330/A-0611-20 - D3 Axis Module
  • KEBA CU313 / C-SICU313KEB - Control Unit
  • KEBA k2-700 - Kemro Control System
  • KEBA CU211 - Central Unit Power Supply Module
  • KEBA C5G-TP5WC - Robot Teach Pendant
  • KEBA C100D-CE - Control Panel
  • KEBA D3-DR361/D-6341-30 - D3 Drive Module
  • KEBA D3-DP/A-1000-0 - D3 Supply Module
  • KEBA SXTPU-21664 - Teach Pendant Unit
  • KEBA T70-rqa-AK0-LK - KeTop Touch Screen Glass Panel
  • KEBA C10-1aa-abb - Control Terminal
  • KEBA T50-T41-CPU - CPU Module
  • KEBA 3HAC023195-001 - IRC5 Sx TPU 2 Teach Pendant Controller
  • KEBA D3-DA 330/A-1211-00 - D3 Axis Module
  • KEBA K2-200 250/X (71580) - Processor Module
  • KEBA O70-bra-A0a-F - Operator Panel
  • Creative Duster Vinyl Brush - Record Stylus Cleaner Brush
  • KEBA 3HAC12929-1/04 - Touch Panel Touchscreen Glass Replacement
  • KEBA OP350/Y-1016 - Keyboard Membrane Protective Film K2-200
  • KEBA DO 321/B - Digital Output Card
  • KEBA DI 325/B - Digital Input Module
  • KEBA E-16-DIGOUT-PLUS (D1456E-2) - Digital Output Board
  • KEBA AI 240/A (068370) - Kemro K2-200 Analog Input Module
  • KEBA TM 220/A (066676) - Kemro K2-200 Module