+086-15305925923

K-WANG

Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
新闻动态
newS
   
Brand

ABB SYNCHROTACT®5 Operating Instructions

From:ABB | Author:Wang | Time :2025-01-02 | 1547 visit: | Share:

ABB SYNCHROTACT®5 Operating Instructions

General information
1.1 Introduction
This User Manual is aimed at persons who have a basic knowledge of working with
electronic equipment, who understand electrical symbols in schematic diagrams, but
who know little or nothing about working with SYNCHROTACT 5 equipment.
The User Manual provides the information required in order to install, commission and
operate the SYNCHROTACT 5 device of types SYN 5201 and SYN 5202.
1.2 Marking of text sections
General warning
This symbol placed before the text indicates situations or conditions which can cause a
risk of death or serious injury. The text describes the procedure for preventing these
risks.
Dangerous voltages
This symbol indicates that, when handling the equipment, dangerous voltages occur
which can cause death or serious injury.
The sections of text marked with "Caution" contain information on situations which can
lead to material damage or equipment failure if the instructions are disregarded.
The sections of text marked with "Note" provide additional information. This must be
taken into consideration in order to prevent malfunctions.
Caution
Note
1.3 Purpose and use of the SYN 5201 and SYN 5202
The digital synchronizer can be used for the following applications:
• For automatic synchronization and paralleling of generators
• For automatic paralleling of synchronous and asynchronous lines, transmission lines
and busbars (incl. tap-changer matching).
• As a paralleling monitoring device (synchrocheck) for monitoring automatic or manual paralleling sequences including dead bus.


Brief description
The SYNCHROTACT 5 digital synchronizer is used for automatic synchronizing and
paralleling of generators with lines and for the paralleling of already synchronous lines.
The device is designed for system frequencies of either 50/60 Hz or 16 2
/3 Hz.
SYN 5201 is a single-channel synchronizing device whose component choice and
software design provides the highest security against incorrect paralleling.
SYN 5202 consists of two independent channels with different hardware and software.
This dual-channel property maximizes security against incorrect paralleling.
All parameters required for paralleling are stored in a parameter set. The paralleling
conditions and the characteristics of the voltage and frequency matchers are defined in
this set. With the option providing seven parameter sets, paralleling can be carried out
under different conditions or with different matcher characteristics using the same
device. Seven configurable digital inputs and outputs are available for the selection and
back indication of a parameter set.
The data which are important for commissioning and for control purposes can be
uploaded or downloaded using the PC tool SynView or, alternatively, via the keypad on
the front panel of the unit.
The following measured variables are generated from the two single-phase measuring
voltages:
Voltage U1, U2
U1 is the reference voltage e.g. line
U2 is the adjustable voltage e.g. generator.
Frequency f1, f2
f1 is the reference frequency
f2 is the adjustable frequency.
Voltage difference ΔU
ΔU = IU1I – IU2I
ΔU > 0 Adjustable voltage is lower
ΔU < 0 Adjustable voltage is higher
Slip s %100*121fs ff − =
s > 0 Adjustable frequency is less (e.g. generator is sub-synchronous)
s < 0 Adjustable frequency is greater (e.g. generator is oversynchronous)
Phase-angle difference α
21 ϕ ϕ α −=
α > 0 Adjustable frequency is lagging
α < 0 Adjustable frequency is leading
Acceleration ds/dt
[ ]ss dtdsxxx /%*2/
561∑==Δ=
(Every 0.5 s, an average value is formed from 56 measurements; sampling period: 9 ms)
ds/dt > 0 Adjustable frequency is reduced (e.g. generator accelerates)
ds/dt < 0 Adjustable frequency increases (e.g. generator is slowed down)
With SYN 5202, the measurement is carried out separately for each channel. It is
possible to carry out three-phase measurements in order to detect connection faults
(rotary field, polarity) and losses of phase.


Voltage measurement (SYN 5202: channel 1)
The two input voltages U1 and U2 are passed to the processor via high-impedance input
resistors, differential amplifiers, low-pass filters and A/D converters.
Voltage measurement channel 2 (SYN 5202 only)
The two input voltages U1 and U2 are passed through high-impedance input resistors
and differential amplifiers. The signal for the amplitude value is formed from this by
conversion and filtering . For zero-passage detection, the signal is filtered and passed
through a comparator. The signals prepared in this way are passed to the processor via
the A/D converter.

SYN 5201

SYN 5202
Frequency matcher with variable intervals
The function INVERSE f changes the way the frequency matcher functions. The pulses
are now always the same length, but the intervals are inversely proportional to the slip.
Pulse length: adjustable by means of the parameter tp fmin: tp = tp fmin
Pause interval: is calculated according to the following formula (can not be set as a
parameter):
2.2.3 Monitoring of paralleling conditions
The monitoring of the paralleling conditions can be divided into these parallel-functioning
blocks:
• voltage-carrying lines
• no-voltage lines
Paralleling of two voltage-carrying lines
The monitoring of the paralleling conditions enables a paralleling command (CHK
RELEASE) if the following conditions are fulfilled simultaneously:
• the phase-angle difference is within the tolerance band
• the slip is within the tolerance band
• the voltage difference is within the tolerance band
• the voltage does not fall below minimum voltage
• the maximum voltage is not exceeded
• the device is in operating status (OPERATING)
• nominal frequency deviation ≤ 5 Hz
Paralleling of no-voltage lines (dead bus)
A special case for the monitoring is the paralleling of no-voltage lines. A paralleling
command release is only issued if the external release signal is active and the
measuring logic enables the release at the same time. The release by the measuring
logic can be enabled if both voltages are within one of the permitted ranges. The dead
bus range can be defined as permissible for one, the other or both measuring voltages
by means of the parameters U1not, U2not and 1*2not.
The monitoring of the paralleling conditions (CHK RELEASE) releases the paralleling
command if the following conditions are fulfilled simultaneously:
• the releasing signal for dead bus (digital input) is issued
• the zero voltage(s) does not exceed the set threshold U0max
• the current voltage does not fall below the minimum voltage
• the current voltage does not exceed the maximum voltage
• the current zero voltage situation corresponds to a configuration permitted by means
of U1not, U2not, 1*2not
• the device is in Operating status (OPERATING)
2.2.4 Command generation
The command generation makes a distinction between asynchronous and synchronous
sources or no-voltage lines. Two modes, one for asynchronous and one for synchronous
sources, run in parallel, so that a source can be asynchronous or synchronous at any
time. The paralleling command is issued in the mode in which all conditions are fulfilled
first.
In SYN 5202 the actuation of the paralleling relays takes place separately in both
channels.
Asynchronous sources
It is called asynchronous sources, if the two lines to be paralleled (or generator and line)
are asynchronous before the circuit breaker is closed.
From the slip s, the acceleration ds/dt, the line frequency f1 and the set paralleling time
t on, the command generation calculates the necessary lead angle αv by which the
paralleling command is shifted forward in time so that the main contacts close exactly on
phase coincidence (see following figure)
  • ABB 216AB61 Industrial Control Module for Automation Systems
  • ABB 5SHX1060H0003 High Power Thyristor Module for Industrial Power Control
  • ABB 07KT97H3 PLC Central Processing Unit for Industrial Automation
  • ABB 3BHB005171R0101 Power Semiconductor Module for Industrial Power Systems
  • KEBA E-SP-CCEC/A/22 - Keyboard Panel
  • KEBA ERHL33 - Module
  • KEBA K-FTC-AN/B - Control Panel Board
  • KEBA DO321 1914D-0 - Digital Output Module
  • KEBA T70Q - Teach Pendant
  • KEBA BL272/A / BL272/B - Bus Coupling Module
  • KEBA T70R - Teach Pendant
  • KEBA PRONET-E-20A-K - Servo Drive
  • KEBA T55-RA0-AU0-LK - Mobile HMI KeTop
  • KEBA DO-272/A - Digital Output Module
  • KEBA PS240/A - Power Supply Module
  • KEBA 2134-00393 - Module Code
  • KEBA E-10-ANALOG-SU - Analog Card
  • KEBA 1904D-0 / D1458E - E-10 Analog Card
  • KEBA FM265A - Function Module
  • KEBA CR17910086 - Controller Board
  • KEBA C5G-TP5WC2 - Robot Teach Pendant
  • KEBA PD242A - Power Supply Module
  • KEBA DI-325 - Digital Input Card
  • KEBA C2-TM-240/A - Digital Input Module
  • KEBA D1547C - I/O Bus Coupling Board
  • KEBA CR-092 - Interface Module
  • KEBA 3HAC023195-003 - IRC5 Teach Pendant Cable
  • KEBA KETOP-T150-MA0 - Mobile HMI
  • KEBA KC-P30-EC24011 - Control Module
  • KEBA 1770B-1 - E-8-THERMO Card
  • KEBA T20T-T00-AR0-CE6 - KeTop Terminal
  • KEBA D1633C-1 - CPU Card
  • KEBA HT401-232-8/0 - Teach Pendant
  • KEBA AO-570 - Analog Output Module
  • KEBA T10-mAb-DMV - Handheld Terminal
  • KEBA C70-rqa-AK0-Le - KeTop Teach Pendant
  • KEBA 1918F-0 - Digital Output Board
  • KEBA T10-mAa-DMV - Handheld Terminal
  • KEBA HT2-SCHLUSSELS - Key Switch for HT2
  • KEBA T100-003-CES - HMI Terminal
  • KEBA GVME610IO - I/O Module
  • KEBA HT501-231 - Teach Pendant
  • KEBA E-CG-CONTROL - Graphic Control Card
  • KEBA D1420F - F-SIC-1 Circuit Board
  • KEBA E-ANA-SUB2 - Analog Sub-module
  • KEBA HT401-222-4 - Teach Pendant
  • KEBA II030 - Input Module
  • KEBA T155-M10-AN0-W - KeTop Mobile HMI
  • KEBA CP088-B - Processor Module
  • KEBA HT40123280 - Operating Terminal
  • KEBA HT4222 - Handheld Terminal
  • KEBA H24025369 - Replacement Part
  • KEBA H24024891 - Replacement Part
  • KEBA SR161 - Analog Input Card
  • KEBA 1762A - E-CRT/EL Circuit Board
  • KEBA T50-011-CES-CE5 - Operator Terminal
  • KEBA E-CON-ELD/B/15 - Control Panel
  • KEBA E-8-THERMO - Thermocouple Card
  • KEBA 330/A-1211-20 - Axis Module
  • KEBA T55-maw-AU0-CE6 - Mobile HMI
  • KEBA C150-110-AK0-N - KeTop HMI
  • KEBA HT4-20656 / HT4-221 - Handheld Terminal
  • KEBA 18658-1 - Analog Board
  • KEBA LM64P89 - LCD Display Screen
  • KEBA E-CPU-88-A - CPU Board
  • KEBA D-CE/59718/15 - Control Board
  • KEBA KC-P30-ES2400E2-E00 - Control Module
  • KEBA 3HAC12929-1 - Teach Pendant SX TPU
  • KEBA E-CON-CC100/A - Control Panel Engel
  • KEBA T200-M01-P20-WES7 - Panel PC Windows Embedded
  • KEBA KC-P30-ES2400B2-M0R - KeControl C3 Module
  • KEBA E8ANALOGC - Analog Card
  • KEBA E-CPU-88-B - CPU Board
  • KEBA T55-raw-AU0-CE6 - Mobile HMI
  • KEBA D1633C - CPU Board
  • KEBA T55-MAW-Au0-CE6 - Mobile HMI
  • KEBA 3HAC11266-4 - Teach Pendant Cable
  • KEBA T20e-m00-Br0-C - Handheld Terminal
  • KEBA E-3-ACU-INC - Controller Board
  • KEBA E-PS-24V - Power Supply Module 24V
  • KEBA C55-2aw-1U0-R - Control Unit
  • KEBA T70-qqu-Aa0-LK - KeTop Teach Pendant
  • KEBA PS244 - Power Supply Module
  • KEBA ECPU186B - CPU Circuit Board
  • KEBA E-8-ANALOG/C - Analog Input Card Engel
  • KEBA AT-4041 - KeControl C3 Controller
  • KEBA T50-ADP - Adapter Module
  • KEBA CP088/D - Control Processor Module
  • KEBA CU312 - Central Unit Module
  • KEBA K2-400 SC440/A - Communication Module
  • KEBA CU212 - Power Supply Module
  • KEBA T20T-T00-AR0-C - KeTop Handheld Terminal
  • KEBA HT4014X20B21572 - Teach Pendant
  • KEBA HT4010V4X201K4 - Operating Terminal
  • KEBA HT401/NC-4X20/20844 - Handheld Terminal
  • KEBA RS-091 / RS091A - Remote Station Module
  • KEBA E8THERMOA - Thermocouple Input Card
  • KEBA TI-570 - Temperature Input Module
  • KEBA C35E 10m/79421/02 - KeTop Teach Pendant
  • KEBA T40-001/58599/06 - Teach Pendant
  • KEBA CR17910087 C5G-GTP5 - Controller Board
  • KEBA T20E-R00-AR0-C - Handheld Terminal
  • KEBA 3HAC023195-001 /02 - Teach Pendant Unit
  • KEBA AR281 - Analog Input Module Engel
  • KEBA D3-DA330/A-0611-20 - D3 Axis Module
  • KEBA CU313 / C-SICU313KEB - Control Unit
  • KEBA k2-700 - Kemro Control System
  • KEBA CU211 - Central Unit Power Supply Module
  • KEBA C5G-TP5WC - Robot Teach Pendant
  • KEBA C100D-CE - Control Panel
  • KEBA D3-DR361/D-6341-30 - D3 Drive Module
  • KEBA D3-DP/A-1000-0 - D3 Supply Module
  • KEBA SXTPU-21664 - Teach Pendant Unit
  • KEBA T70-rqa-AK0-LK - KeTop Touch Screen Glass Panel
  • KEBA C10-1aa-abb - Control Terminal
  • KEBA T50-T41-CPU - CPU Module
  • KEBA 3HAC023195-001 - IRC5 Sx TPU 2 Teach Pendant Controller
  • KEBA D3-DA 330/A-1211-00 - D3 Axis Module
  • KEBA K2-200 250/X (71580) - Processor Module
  • KEBA O70-bra-A0a-F - Operator Panel
  • Creative Duster Vinyl Brush - Record Stylus Cleaner Brush
  • KEBA 3HAC12929-1/04 - Touch Panel Touchscreen Glass Replacement
  • KEBA OP350/Y-1016 - Keyboard Membrane Protective Film K2-200
  • KEBA DO 321/B - Digital Output Card
  • KEBA DI 325/B - Digital Input Module
  • KEBA E-16-DIGOUT-PLUS (D1456E-2) - Digital Output Board
  • KEBA AI 240/A (068370) - Kemro K2-200 Analog Input Module
  • KEBA TM 220/A (066676) - Kemro K2-200 Module