K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
EMERSON-DeltaV SLS1508 Logic Solver
❤ Add to collection

EMERSON-DeltaV SLS1508 Logic Solver

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

Introduction The DeltaV SIS system, part of Emerson’s smart SIS,  ushers in the next generation of Safety Instrumented  Systems (SIS). This smart SIS approach uses the power  of predictive field intelligence to increase the availability of  the entire safety instrumented function

16673.00
¥15993.00
Weight:3.300KG
Quantity:
(Inventory: 33)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

Introduction The DeltaV SIS system, part of Emerson’s smart SIS,  ushers in the next generation of Safety Instrumented  Systems (SIS). This smart SIS approach uses the power  of predictive field intelligence to increase the availability of  the entire safety instrumented function


EMERSON-DeltaV SLS1508 Logic Solver

World's first smart SIS Logic Solver

Integrated, yet separate from the control

system

Easy compliance with IEC 61511

Scales to fit any size application

SIL 3-rated

Online addition of Logic Solvers

Benefits The World’s first smart SIS. Research shows that  over 85% of all faults in SIS applications occur in field  instruments and final control elements. The DeltaV SIS system has the first smart Logic Solver. It communicates  with intelligent field devices using the HART protocol to  diagnose faults before they cause spurious trips. This  approach increases process availability and reduces  lifecycle costs. Integrated yet separate. Safety standards insist on  separation of the control and safety systems in order to  remove any possibility of a common failure affecting both  layers of protection. End users require an integrated  configuration, maintenance, and operations environment.  The DeltaV SIS system has a unique solution to this  problem; implementing safety functions with dedicated  hardware, software, and networks while being seamlessly  integrated at the workstations. Easy Compliance with IEC 61511. IEC 61511  demands rigorous user management and the DeltaV SIS  platform provides it. IEC 61511 requires that any changes  made from an HMI (e.g. to a trip limit) be extensively  vetted to ensure that the right data is written to the right  Logic Solver. The DeltaV SIS system automatically  provides this data verification. Scales to fit any size application. Whether you have  an isolated wellhead or a large ESD/fire and gas  application, the DeltaV SIS system scales to provide you  with the safety coverage you need for your SIL 1. 2 and 3  safety functions. Each Logic Solver has dual CPUs and  sixteen channels of I/O built into it. This means that no  additional processors will ever be required to expand the  system, since each Logic Solver contains its own CPUs.  Scan rate and memory usage are constant and  independent of system size. The DeltaV SIS system scales to fit your safety  application. SIL 3-rated. DeltaV SLS 1508 Logic Solvers are installed  in redundant pairs for increased process availability of  your SIS loops. A redundant SLS 1508 Logic Solver Redundant architecture includes:  dedicated redundancy link  separate power supply to each Logic Solver  I/O published locally every scan on redundant peerto-peer link  same input data for each Logic Solver Online addition of Logic Solvers. The system  checks for new hardware every scan, so equipment can  be added to an on-line system in real time. Online addition  of new logic solvers means your process does not get  interrupted. As new equipment is added, the DeltaV  Explorer software recognizes it and makes it ready to be  configured.

Product Description This section provides general information on DeltaV SIS  hardware. Refer to the Installing Your DeltaV Digital  Automation System manual for more information on DeltaV system equipment. DeltaV SIS Equipment A DeltaV automation system consists of carriers, one or  more I/O subsystems, controllers, power supplies,  workstations, and a control network. The DeltaV SIS system consists of:  Redundant Logic Solvers (SLS 1508) and termination  blocks  SISnet Repeaters (see separate product data sheet)  Carrier extender cables  Local peer bus extender cables  Right 1-wide carrier with termination Logic Solvers (SLS1508) contain the logic-solving  capability and provide an interface to 16 I/O channels that  can be configured as Discrete Input, Discrete Output,  Analog Input (HART) and HART two-state output  channels. Logic Solvers and termination blocks install on  the 8-wide carrier. Logic Solvers communicate with each  other through the carriers over a two-channel, local peer  bus (SISnet) and remote peer ring. Local Logic Solvers are hosted by the same DeltaV controller and remote  Logic Solvers are hosted by a different DeltaV controller.  Logic Solvers are powered by a 24 V DC power supply  that is separate from the power supply that drives the  DeltaV controller and I/O. Logic Solvers install in oddnumbered slots (1.3.5.7) on the 8-wide carrier. Redundant  Logic Solvers use four slots. SISnet Repeaters extend communication beyond the  local Logic Solvers connected to one DeltaV controller and  broadcast global messages to remote Logic Solvers  through a fiber-optic ring Carrier extender cables extend  Local Bus power and signals between 8-wide carriers.  Local peer bus extender cables extend the local peer bus  (SISnet) between Logic Solvers on different carriers. 1- wide carriers with terminators terminate the local peer bus  at the final carrier. Communication Control Network: The DeltaV Control Network provides  communication between the nodes in the DeltaV network.  Refer to the Installing Your DeltaV Digital Automation  System manual for complete information on the Control  Network. Local Bus: The Local Bus provides communication  between DeltaV controllers and Logic Solvers and  between DeltaV controllers and SISnet Repeaters. Local Peer Bus (SISnet): Logic Solvers communicate  with other Logic Solvers and with local SISnet Repeaters  through the carriers over a 2 channel local peer bus. The  same message is broadcast over both channels. The local  peer bus must be terminated at both ends. The local peer  bus is terminated at the left end through the 2-wide  power/controller carrier and at the right end through a  terminated 1-wide carrier. The SISnet Repeaters can be located anywhere on a local  peer bus – between the DeltaV Controller(s) and the  terminated 1-wide carrier. Remote Peer Ring: SISnet Repeaters hosted by one  DeltaV controller communicate with SISnet Repeaters  hosted by a different DeltaV controller over a fiber-optic  remote peer ring. A local SISnet Repeater collects locally  generated messages that have been designated as global variables into a single message and sends it to the next  SISnet Repeater in the ring. Upon receipt of a message,  the receiving SISnet Repeater broadcasts it on its local  peer bus (SISnet) and forwards the message to the next  SISnet Repeater in the ring. A global message is  forwarded around the ring once. The primary SISnet  Repeaters form one fiber-optic ring and the secondary  form a separate, independent ring. Carrier extender cables and local peer bus extender  cables connecting a DeltaV controller and 8-wide carrier  with standard DeltaV I/O and DeltaV SIS Logic Solvers to  a second 8-wide carrier (hosted by the same controller)  are installed with Logic Solvers, SISnet Repeaters, and a  terminated 1-wide carrier. Logic Solver messages are  communicated to a remote DeltaV SIS (hosted by a  separate controller) through fiber-optic cables.

Unique Redundancy Methodology Introduction to Redundancy Unlike other SIS Logic Solvers, the SLS 1508 is rated  suitable for use in SIL 3 applications in simplex mode.  Redundant SLS 1508 Logic Solvers run in parallel at all  times. Both read the inputs from the I/O terminals, both  execute the logic and both drive the outputs at the I/O  terminals. There is no concept of primary and backup or  master and slave, which is unlike any other SIS. The only  difference between the two is that one communicates with  both the engineering and operator workstations and the  dedicated safety network (SISnet); this is the one with the  Active light on the bezel. The other (Standby) is  communicating only on the SISnet. In the event that a failure is detected in one of the SLS  1508 Logic Solvers, it automatically goes to a failed state.  In this condition all its output channels are de-energized;  this has no impact on the other Logic Solver or the  physical outputs because the other Logic Solver continues  to read inputs, execute logic and drive outputs. The  transition from redundant to simplex mode is therefore  completely bumpless. Redundancy The redundant SLS 1508 Logic Solver modules are  connected to the field at the redundant terminal block. No  control strategy configuration is required to take  advantage of SLS 1508 Logic Solver redundancy, as the  system’s auto-sense capability automatically recognizes  the redundant pair of Logic Solvers. An integrity error alarm in a redundant Logic Solver pair  will notify the operator of a failure. Both Logic Solvers in a  redundant pair are monitored for integrity alarms at all  times. Events that can cause integrity alarms include:  Hardware failure within a Logic Solver  Communications failure between a Logic Solver and  the SISnet  Communications failure between a redundant pair of  Logic Solvers  Communications failure between a Logic Solver and  an DeltaV Controller  Removal of a Logic Solver from the carrier The health and status of both Logic Solvers and their  channels are available in the diagnostics explorer. When one of a redundant pair of SLS 1508 Logic Solvers  is removed online there is no disturbance to the process.  When the missing Logic Solver is replaced with another  Logic Solver, the new Logic Solver completes its power-up  self-tests before the active Logic Solver cross-loads the  current database. In safe areas, failed Logic Solvers can  be replaced under power. In hazardous areas, appropriate  installation procedures must be followed. Automatic proof testing can be selected on a redundant  pair of Logic Solvers. The desired proof-test interval is set  in the configuration and the Logic Solvers perform the  proof test automatically. A warning is given to the operator  before the automatic proof test is started. Sequence of Events Capability With DeltaV SIS, events are automatically generated as  function blocks are executed within a module scan. Events  are time stamped with a resolution of <1 ms, and they are  recorded in the sequence that they occur in the Event  Chronicle. When using standard function blocks such as  input blocks, voter blocks, and cause and effect blocks, a  standard set of events are automatically generated without  special configuration or programing required. For example,  I/O failures, trip limits, first outs, and other similar events  are automatically time stamped by function blocks and  recorded in the Event Chronicle. When a process variable  exceeds the trip limit, DeltaV SIS records the event along  with the analog value and the trip condition. In general, when there is a plant event that triggers an  emergency shutdown from the SIS, one input will exceed  a trip limit on one scan and this will cause outputs to trip  and more inputs will then change state. Sequence of  Events Recording has been used to find that first input that  caused the trip by looking at all of the inputs in the plant.  With the DeltaV SIS system, the operator simply filters the  Event Chronicle for first out trips, and the first-out is clearly  visible.  If higher resolution is required for some channels then  they can be wired to both the DeltaV SIS Logic Solver and  also to a DeltaV Discrete Input Card for Sequence of  Events, which provides a resolution of 0.25 ms.


  • ABB 3BHT300009R1 DO620 Digital Output 32ch, 60VDC
  • ABB 3BHT300006R1 DO610 Digital Output 32ch 24VDC
  • ABB 0338434M-REF Refurbished DLM 02, Link module, as of V3
  • ABB DLM01 EXCITATION REDUNDANCY CONTROL SYSTEM
  • ALSTOM V4561484-0100 PCB circuit boards
  • ABB NE870 Network Router 3BSE080239R1
  • ABB DI610 – 32-Channel Digital Input Module for Industrial Automation
  • ABB DDO02 Industrial Digital Output Module
  • ABB 0369627MR DDO01 - DIGITAL OUTPUT
  • ABB DDI03 Module
  • ABB 0369626M-EXC Exchange of DDI 01, Digital input as of V 3
  • ABB Y0338701M DCP10 - CPU MODULE 8 MB
  • ABB DCP02 CPU MODULE
  • ABB 0369629M-REF Refurbished DAO 01, Analog output, as of V3
  • ABB DAI03 Digital Input Module
  • ABB D-20-0-1102 control module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB BRC-300 Bridge Controller and Process Bus Adapter
  • ABB CI520V1 AF100 Communication Interface
  • ABB 3BHT300003R1 CI610 IOB_A Bus Extender for Basic Unit
  • ABB CI615 Controller Module
  • ABB EXC3BSE012868R1 CI626V1 AF100 Communication Interface
  • ABB CI627 Advanced Industrial Control Module
  • ABB 3BSE020520R1 CI810B AF 100 Fieldbus Comm. Interface
  • ABB CP450 Installation and Operation Manual
  • ABB CR-M4LS Logical socket for 2c/o or 4c/o CR-M relay
  • ABB 3HAC14550-2/09A Single servo drive unit
  • ABB 3HAC17326-1/02 Motor M26 Type B
  • ABB 3HNA001572-001 MCCB-02
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNE00313-1 (with 10 m cable and plug)
  • ABB 61615-0-1200000 Panel Controller
  • ABB AI610 – 32 Channel 12-bit Analog Input Module
  • ABB AI625 Analog Input 16ch, 12 Bit, 4-20 mA
  • ABB AI835A System 800xA hardware selector
  • ABB 3BHT300008R1 AO610 Analog Output 16ch, 12bit
  • ABB 3HAB8101-8/08Y Servo Drive Module
  • ABB 3HAC025466-001 Advanced Control Module for Industrial Automation
  • Rolls-Royce Marine AS 5880-PC1002 REV-A DEP. Steering - TENFJORD PCB Card
  • Rolls-Royce 5880-pc1002 Version A Dep Steering Gear-Tenfjord PCB Card 99046
  • Rolls-Royce Marine Lauer LCA 325. P2 PROFIBUS-DP Network Display Panel UN924
  • Rolls-Royce Marine UN924 Digital Display Controller
  • Rolls-Royce UN930 Digital Display Controller 24V
  • Rolls-Royce UN31 ECR Panel 000127603
  • Rolls-Royce Marine AS UN991.1 Distribution Plate
  • Rolls-Royce Propulsion Control Boards
  • Rolls-Royce SLIO 02 Canman controller network
  • Rolls-Royce Electronics 1071 Automatic Display Type No. 07918 B UN 921 ECR 24VDC
  • Rolls-Royce PCC1030C ULSTEIN Panel Controller Card
  • Rolls-Royce KAMEWA Propeller Control Room Panel Basic R160637A
  • Rolls-Royce Ulstein-UMAS V Marine Automation UN925 Panel Controller Roller for Parts
  • Rolls-Royce Marine AS UN921 Operator Panel
  • Rolls-Royce Marine r10I53s / R10I53S Panel Computer 98H0101A0000I Version 1.9
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB 3ASC25H204 DAPU100 high-performance processor module
  • ABB 3ASC25H203 Module
  • ABB 35AE92 – High Performance Industrial Control Module
  • ABB 200900-004 I/O Adaptor PLC Board
  • AB 1794-IE8 FLEX I/O Analog Modules
  • AB 1794-IF8IH FLEX I/O Isolated Input HART Analog Module
  • AB 1794-IE8H FLEX I/O 8 Input HART Analog Module
  • AB 1794-L34 FlexLogix Controller System User Manual
  • AB 1794-OB8 FLEX I/O Digital DC Output Modules
  • AB Enhanced PLC-5 Programmable Controllers
  • AB 1785-BCM and 1785-BEM Modules for PLC-5 Programmable Controllers
  • AB Cat. No. 1785-CHBM ControlNet PLC-5 Hot Backup System
  • AB 1785-ENET PLC-5 Ethernet Interface Module
  • AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers
  • AB 1785-L40E Ethernet PLC-5 Programmable Controllers
  • AB 1785-PFB PLC-5 PROFIBUS Local Station Manager
  • AB 1785 PLC-5 Programmable Controller System
  • AB 1785 um019 PLC-5 Ethernet Interface Module
  • AB 1786 - RPA/B ControlNet Modular Repeater Adapter
  • AB PLC-5 1771 to ControlLogix 1756 I/O Wiring Conversion Systems
  • AB Analog Input Module Cat. No. 1771-IFE
  • AB 1771-IFE A/B/C Analog Input Module
  • AB Cat. No.1771-IVN DC (10-30V) Input Module
  • AB 1771-OFE Series B Analogue Output Modules
  • AB Cat. No.1771-QB Linear Positioning Module
  • AB 1771-VHSC Very High-speed Counter Module
  • AB 1771 Digital I/O AC Input and Output Modules
  • AB 1783 Series Ethernet Taps
  • AB Stratix 8000 and 8300 Ethernet Managed Switches
  • AB MicroLogix 1400 Programmable Controllers
  • AB1642 Module Manual MicroLogix 1500 & CompactLogix Resolver Interface Module
  • AB 1769-L24ER-QB1B CompactLogix 5370 L2 Controllers
  • AB 1769 Compact I/O Modules Specifications
  • AB 1769 Controller CompactLogix System
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controller
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controllers
  • AB 1762-L24AWA MicroLogix 1200 Programmable Controllers
  • AB 1762-IQ8OW6 DC-Input/Relay-Output Combination Module
  • AB 1757-SRM ProcessLogix and ControlLogix System Redundancy Module
  • GE ALSTOM:SPU.232.2.029.366.817
  • AB ProcessLogix R500.1 Process Control System
  • AB 1761 - NET - Ethernet Interface for ENI MicroLogix
  • AB 1761-L20BWB-5A MicroLogix 1000 Series
  • AB 1761 MicroLogix 1000 Programmable Controller
  • AB 1756-DHRIO, 1756-DHRIOXT ControlLogix Data Highway Plus-Remote I/O Communication Interface Module
  • AB 1756-D IO ControlLogix I/O Modules Specifications
  • AB 1756-cpu ControlLogix Systems
  • AB 1756 ControlLogix Analog I/O Modules
  • AB 1756 ControlLogix System
  • AB 1756 IB32 ControlLogix 32-point DC (10…31.2V) Input Module Series B
  • AB 1756-IR6I ControlLogix Analog I/O Modules
  • AB 1756-DNB ControlLogix DeviceNet Scanner Module
  • AB 1756-CN2RXT ControlLogix-XT ControlNet Interface Module
  • AB 1756-CN2 1756-CN2R ControlLogix ControlNet Interface Module
  • AB 1747 - AENTR SLC 500 EtherNet/IP Adapter
  • AB 1746, 1747SLC500 Control System Selection Guide
  • AB 1746-C7, 1746-C9, 1746-C16 SLC 500™ Programmable Controller Rack Interconnect Cables
  • AB 1746-BTM Drum Temperature Control Module
  • AB 1746-BAS and 1746-BAS-T SLC 500 BASIC and BASIC-T Modules
  • AB 1746-A4, -A7, -A10 SLC 500™ Modular Chassis
  • AB SLC 500™ Modular Chassis 1746-A4, -A7, -A10 and -A13 Series B
  • AB 1734-AENT POINT I/O EtherNet/IP Adapter
  • AB Allen-Bradley's 1734 POINT I/O Series Products
  • A-B 1715 Redundant I/O System Specifications
  • AB 56AMXN/B ControlLogix AutoMax DCSNet and AutoMax Remote I/O Communication Interface Module
  • AB Bulletin 1203 Serial Communications Module
  • AB 1326AB High Performance AC Servomotors
  • AB 1326AB 460V, Torque Plus Series, AC Servo Motors
  • AB 1336 PLUS II Engineering Drives
  • AB CENTERLINE® 2100/2400 Series Motor Control Centres
  • AB 1394 Digital AC Multi-Axis Motion Control System
  • AB 1398 ULTRA 100 Series Drives
  • AB 1402 Series Line Synchronisation Modules
  • AB 1407-CGCM Combined Generator Control Module