K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
GE IC693PBS201 PLC Profibus DP network slave module
❤ Add to collection

GE IC693PBS201 PLC Profibus DP network slave module

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

GE IC693PBS201 PLC Profibus DP network slave module

19000.00
¥19000.00
Weight:3.550KG
Quantity:
(Inventory: 50)
Consultation
Accessories
  • ABB-Binary I/O m
    Original :¥15774.00
    With a price :¥15774
    Quantity  
  • ABB-Optical star
    Original :¥9993.00
    With a price :¥9993
    Quantity  
  •   
    Original :¥
    0.00
      
      With the total price :¥
    0.00
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

GE IC693PBS201 PLC Profibus DP network slave module




GE IC693PBS201 PLC Profibus DP network slave module

4、 GE Fanuc Profibus DP Network Product Description

The GE Fanuc series PACSystems supports Profibus DP master/slave modules 5136-PFB-VME for 90-70.

5136-PFB-VME, as a standard VME module, can be plugged into PAC70 systems and 90-70 PLCs

On the central rack and configured as "3rd PartyVME" by its programming software. This interface card uses 256K bytes

Standard memory and 1K byte short I/O storage area.

According to the working principle of Profibus DP, the DP master station should know the detailed information of all slave stations on the network

(e.g. station address and I/O quantity for each slave station). Utilizing the SST Profibus Configuration software package

These configuration information can be generated and saved as binary files (*. bss). This configuration information file can be accessed from

Download the serial port of 5136-PFB-VME to the module. This interface card can support up to 96 DP slave stations (such as stations)

If the number exceeds 32, a repeater is required.

4.1 The configuration steps for the 90-70 system using 5136-PFB-VME are as follows:

Establish a 90-70 Profibus DP network (Version 2.0)

4.1.1 Introduction

The 90-70 5136-PFB-VME interface program PB_0825 mentioned in this article can be completed in just 3ms (CPU915)

120 word slave data exchange. This program is a ladder diagram program that can be obtained through GEFanuc.

This article provides a detailed introduction on how to use the 5136-PFB-VME interface card to connect to the Profibus DP network in a 90-70 PLC.

The interface program PB_0825 mentioned in the article can support two 5136-PFB-VME interface cards. Of course, you can also

This interface program is used in PLC systems with only one interface card.

5136-PFB-VME, as a standard VME module, can be plugged into the central rack of 90-70 PLCs and can be used by 90-70

The programming software configuration is "3" PartyVME ". This interface card uses 256K bytes of standard memory and 1K bytes of short I/O

Storage area.

4.1.2 Hardware Installation

4.1.2.1 Setting Short I/O Address

The 5136-PFB-VME interface card occupies a short address interval of 1K bytes on the VME bus, and this memory interval can be occupied by 90-

Use the VME-Read/Write instruction (AM=29H) in CPU 70 to access. The starting address of this memory area is dialed

Set the 1st to 6th positions of code switch S1, and the switch settings in the following figure will connect the ground of two 5136-PFB-VME modules

The addresses are set to 8000H and 7000H respectively. Here, the interface card with address 8000H is referred to as the first card,

7000H is called the second card.

Short I/O Base Address

Base Address

position 1

Position 2

Position 3

position 4

position 5

position 6

8000H

OFF

ON

ON

ON

ON

ON

7000H

ON

OFF

OFF

OFF

ON

ON

The first card is set to 8000H, and the second card is set to 7000H

These two interface cards can be inserted into any slot on the mainframe, but there must be no empty slots between these two modules and the CPU.


GEFanuc Automation Network and Communication

Profibus DP network

The interface program consists of three basic subroutine blocks: Init_0, Init_1, and Assign. Init_0 is used to initialize the first block

Port card (with an I/O address of 8000H). Init_1 is used to initialize the interface card with an I/O address of 7000H. Assign subroutine

Used to exchange slave data between CPU and interface card.

Due to the internal use of the% L variable in the Init_0, Init_1, and Assign blocks, these three blocks must

Called in PB0 and PB1.

Note: After successfully initializing the first interface card with Init_0, the variable "Init_0_oK" (% T00217) will be set to

1. After successfully initializing the second interface card (with an I/O address of 7000H), the variable 'Init_1_SK'

(% T00233) will be set to 1. Variables% T00209 to% T00256 are reserved for initialization program use, user

Please do not use these variables in the program The variables% L00001 to% L01320 of subroutines PB-0 and PB_1 are assigned

When using program blocks, user programs should use variables with addresses of% L01320 or higher.

Steps:

4.1.3.1 Call the Init_0 and Init_1 subroutine blocks

Wg: Set whether the watchdog of the interface card is working. Fill in 1 to allow the watchdog to work, and fill in 0 to prohibit it from working.

Tx: The data sent from the master station to the slave station (i.e., the output of the slave station) is temporarily stored at the starting address in the% L variable. length

512 words. Its meaning is consistent with the BT parameters. Note that all output data from the slave station is in ascending order of the slave station address

The sequence is arranged in blocks, and the word length of each output data block from the slave station must be a multiple of 4 (for example, on the bus)

There are 4 slave stations with addresses 3, 4, 6, and 8 respectively. If the Tx parameter is% L01750, slave station 3 has 5 bytes

The output data from station 4 has 10 bytes and station 6 has 1 byte. Then the output data block from station 3

%Starting from L01750, the output data from station 4 starts from% L01754, and the output data from station 6 starts from

%Starting from L01762, the output data from station 8 starts from% L01766. Users can calculate each slave station themselves

The offset address of the output data in% L, and then use the MOV instruction to move the actual output data (% Q) to this address

Some% L. However, after the Assign program block is called for the first time, it will automatically calculate the output data of each slave station

%The offsets in L are stored in the TF parameters.

TF: The offset address of the output data block of each slave station calculated after the first call of the Assign program block. long

120 words. If TF=% L01501, calculated according to the above example, then after the first call of the Assign program block,

%L01501=1750,% L01502=1754,% L01503=1762,% L01504=1766. The user program should be in

After assigning the program, use indirect addressing to move the actual output data from the slave station to% L01750,% L01754

%L01762,% L01766. As shown below:

Mov

%O001

@L01501

RF: The offset address of each slave input data block calculated by the Assign program block, which has the same meaning as the TF parameter

Like. Length of 120 words.

Rx: The starting address of the data received by the master station from the slave station (i.e., the input from the slave station) is temporarily stored in the% L variable. long

The degree is 512 words, and its meaning is similar to the TX parameter.

St: Slave station status word, with a length of 120 words. Each status word represents the status of a slave station, with the first word representing the station's location

The status of the slave station with address 0, and the second status word represents the status of the slave station with address 1. The height of the status word

The byte stores the sequence number of the slave station (for example, if there are 4 slave stations on the bus with addresses 3, 4, 6, and 8, then this

The sequence numbers of the slave stations are 0, 1, 2, and 3, respectively. The low byte of the status word contains the current status information of the slave station

If it is 80H, it means that the slave station is working normally; If it is 00H, it means that the slave station has a fault, which may

It is a cable or connector malfunction or configuration error. If the entire status word is FFO0H, it means that the slave is not present

It is configured in the SST Profibus configuration software.

be careful:

If you only have one 5136-PFB-VME interface card in your system, you only need to use the program blocks PB-0 or PB_1

One of them.

  • ABB 3BHT300009R1 DO620 Digital Output 32ch, 60VDC
  • ABB 3BHT300006R1 DO610 Digital Output 32ch 24VDC
  • ABB 0338434M-REF Refurbished DLM 02, Link module, as of V3
  • ABB DLM01 EXCITATION REDUNDANCY CONTROL SYSTEM
  • ALSTOM V4561484-0100 PCB circuit boards
  • ABB NE870 Network Router 3BSE080239R1
  • ABB DI610 – 32-Channel Digital Input Module for Industrial Automation
  • ABB DDO02 Industrial Digital Output Module
  • ABB 0369627MR DDO01 - DIGITAL OUTPUT
  • ABB DDI03 Module
  • ABB 0369626M-EXC Exchange of DDI 01, Digital input as of V 3
  • ABB Y0338701M DCP10 - CPU MODULE 8 MB
  • ABB DCP02 CPU MODULE
  • ABB 0369629M-REF Refurbished DAO 01, Analog output, as of V3
  • ABB DAI03 Digital Input Module
  • ABB D-20-0-1102 control module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB BRC-300 Bridge Controller and Process Bus Adapter
  • ABB CI520V1 AF100 Communication Interface
  • ABB 3BHT300003R1 CI610 IOB_A Bus Extender for Basic Unit
  • ABB CI615 Controller Module
  • ABB EXC3BSE012868R1 CI626V1 AF100 Communication Interface
  • ABB CI627 Advanced Industrial Control Module
  • ABB 3BSE020520R1 CI810B AF 100 Fieldbus Comm. Interface
  • ABB CP450 Installation and Operation Manual
  • ABB CR-M4LS Logical socket for 2c/o or 4c/o CR-M relay
  • ABB 3HAC14550-2/09A Single servo drive unit
  • ABB 3HAC17326-1/02 Motor M26 Type B
  • ABB 3HNA001572-001 MCCB-02
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNE00313-1 (with 10 m cable and plug)
  • ABB 61615-0-1200000 Panel Controller
  • ABB AI610 – 32 Channel 12-bit Analog Input Module
  • ABB AI625 Analog Input 16ch, 12 Bit, 4-20 mA
  • ABB AI835A System 800xA hardware selector
  • ABB 3BHT300008R1 AO610 Analog Output 16ch, 12bit
  • ABB 3HAB8101-8/08Y Servo Drive Module
  • ABB 3HAC025466-001 Advanced Control Module for Industrial Automation
  • Rolls-Royce Marine AS 5880-PC1002 REV-A DEP. Steering - TENFJORD PCB Card
  • Rolls-Royce 5880-pc1002 Version A Dep Steering Gear-Tenfjord PCB Card 99046
  • Rolls-Royce Marine Lauer LCA 325. P2 PROFIBUS-DP Network Display Panel UN924
  • Rolls-Royce Marine UN924 Digital Display Controller
  • Rolls-Royce UN930 Digital Display Controller 24V
  • Rolls-Royce UN31 ECR Panel 000127603
  • Rolls-Royce Marine AS UN991.1 Distribution Plate
  • Rolls-Royce Propulsion Control Boards
  • Rolls-Royce SLIO 02 Canman controller network
  • Rolls-Royce Electronics 1071 Automatic Display Type No. 07918 B UN 921 ECR 24VDC
  • Rolls-Royce PCC1030C ULSTEIN Panel Controller Card
  • Rolls-Royce KAMEWA Propeller Control Room Panel Basic R160637A
  • Rolls-Royce Ulstein-UMAS V Marine Automation UN925 Panel Controller Roller for Parts
  • Rolls-Royce Marine AS UN921 Operator Panel
  • Rolls-Royce Marine r10I53s / R10I53S Panel Computer 98H0101A0000I Version 1.9
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB 3ASC25H204 DAPU100 high-performance processor module
  • ABB 3ASC25H203 Module
  • ABB 35AE92 – High Performance Industrial Control Module
  • ABB 200900-004 I/O Adaptor PLC Board
  • AB 1794-IE8 FLEX I/O Analog Modules
  • AB 1794-IF8IH FLEX I/O Isolated Input HART Analog Module
  • AB 1794-IE8H FLEX I/O 8 Input HART Analog Module
  • AB 1794-L34 FlexLogix Controller System User Manual
  • AB 1794-OB8 FLEX I/O Digital DC Output Modules
  • AB Enhanced PLC-5 Programmable Controllers
  • AB 1785-BCM and 1785-BEM Modules for PLC-5 Programmable Controllers
  • AB Cat. No. 1785-CHBM ControlNet PLC-5 Hot Backup System
  • AB 1785-ENET PLC-5 Ethernet Interface Module
  • AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers
  • AB 1785-L40E Ethernet PLC-5 Programmable Controllers
  • AB 1785-PFB PLC-5 PROFIBUS Local Station Manager
  • AB 1785 PLC-5 Programmable Controller System
  • AB 1785 um019 PLC-5 Ethernet Interface Module
  • AB 1786 - RPA/B ControlNet Modular Repeater Adapter
  • AB PLC-5 1771 to ControlLogix 1756 I/O Wiring Conversion Systems
  • AB Analog Input Module Cat. No. 1771-IFE
  • AB 1771-IFE A/B/C Analog Input Module
  • AB Cat. No.1771-IVN DC (10-30V) Input Module
  • AB 1771-OFE Series B Analogue Output Modules
  • AB Cat. No.1771-QB Linear Positioning Module
  • AB 1771-VHSC Very High-speed Counter Module
  • AB 1771 Digital I/O AC Input and Output Modules
  • AB 1783 Series Ethernet Taps
  • AB Stratix 8000 and 8300 Ethernet Managed Switches
  • AB MicroLogix 1400 Programmable Controllers
  • AB1642 Module Manual MicroLogix 1500 & CompactLogix Resolver Interface Module
  • AB 1769-L24ER-QB1B CompactLogix 5370 L2 Controllers
  • AB 1769 Compact I/O Modules Specifications
  • AB 1769 Controller CompactLogix System
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controller
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controllers
  • AB 1762-L24AWA MicroLogix 1200 Programmable Controllers
  • AB 1762-IQ8OW6 DC-Input/Relay-Output Combination Module
  • AB 1757-SRM ProcessLogix and ControlLogix System Redundancy Module
  • GE ALSTOM:SPU.232.2.029.366.817
  • AB ProcessLogix R500.1 Process Control System
  • AB 1761 - NET - Ethernet Interface for ENI MicroLogix
  • AB 1761-L20BWB-5A MicroLogix 1000 Series
  • AB 1761 MicroLogix 1000 Programmable Controller
  • AB 1756-DHRIO, 1756-DHRIOXT ControlLogix Data Highway Plus-Remote I/O Communication Interface Module
  • AB 1756-D IO ControlLogix I/O Modules Specifications
  • AB 1756-cpu ControlLogix Systems
  • AB 1756 ControlLogix Analog I/O Modules
  • AB 1756 ControlLogix System
  • AB 1756 IB32 ControlLogix 32-point DC (10…31.2V) Input Module Series B
  • AB 1756-IR6I ControlLogix Analog I/O Modules
  • AB 1756-DNB ControlLogix DeviceNet Scanner Module
  • AB 1756-CN2RXT ControlLogix-XT ControlNet Interface Module
  • AB 1756-CN2 1756-CN2R ControlLogix ControlNet Interface Module
  • AB 1747 - AENTR SLC 500 EtherNet/IP Adapter
  • AB 1746, 1747SLC500 Control System Selection Guide
  • AB 1746-C7, 1746-C9, 1746-C16 SLC 500™ Programmable Controller Rack Interconnect Cables
  • AB 1746-BTM Drum Temperature Control Module
  • AB 1746-BAS and 1746-BAS-T SLC 500 BASIC and BASIC-T Modules
  • AB 1746-A4, -A7, -A10 SLC 500™ Modular Chassis
  • AB SLC 500™ Modular Chassis 1746-A4, -A7, -A10 and -A13 Series B
  • AB 1734-AENT POINT I/O EtherNet/IP Adapter
  • AB Allen-Bradley's 1734 POINT I/O Series Products
  • A-B 1715 Redundant I/O System Specifications
  • AB 56AMXN/B ControlLogix AutoMax DCSNet and AutoMax Remote I/O Communication Interface Module
  • AB Bulletin 1203 Serial Communications Module
  • AB 1326AB High Performance AC Servomotors
  • AB 1326AB 460V, Torque Plus Series, AC Servo Motors
  • AB 1336 PLUS II Engineering Drives
  • AB CENTERLINE® 2100/2400 Series Motor Control Centres
  • AB 1394 Digital AC Multi-Axis Motion Control System
  • AB 1398 ULTRA 100 Series Drives
  • AB 1402 Series Line Synchronisation Modules
  • AB 1407-CGCM Combined Generator Control Module