K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
GE IC693PBS201 PLC Profibus DP network slave module
❤ Add to collection

GE IC693PBS201 PLC Profibus DP network slave module

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

GE IC693PBS201 PLC Profibus DP network slave module

19000.00
¥19000.00
Weight:3.550KG
Quantity:
(Inventory: 50)
Consultation
Accessories
  • ABB-Binary I/O m
    Original :¥15774.00
    With a price :¥15774
    Quantity  
  • ABB-Optical star
    Original :¥9993.00
    With a price :¥9993
    Quantity  
  •   
    Original :¥
    0.00
      
      With the total price :¥
    0.00
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

GE IC693PBS201 PLC Profibus DP network slave module




GE IC693PBS201 PLC Profibus DP network slave module

4、 GE Fanuc Profibus DP Network Product Description

The GE Fanuc series PACSystems supports Profibus DP master/slave modules 5136-PFB-VME for 90-70.

5136-PFB-VME, as a standard VME module, can be plugged into PAC70 systems and 90-70 PLCs

On the central rack and configured as "3rd PartyVME" by its programming software. This interface card uses 256K bytes

Standard memory and 1K byte short I/O storage area.

According to the working principle of Profibus DP, the DP master station should know the detailed information of all slave stations on the network

(e.g. station address and I/O quantity for each slave station). Utilizing the SST Profibus Configuration software package

These configuration information can be generated and saved as binary files (*. bss). This configuration information file can be accessed from

Download the serial port of 5136-PFB-VME to the module. This interface card can support up to 96 DP slave stations (such as stations)

If the number exceeds 32, a repeater is required.

4.1 The configuration steps for the 90-70 system using 5136-PFB-VME are as follows:

Establish a 90-70 Profibus DP network (Version 2.0)

4.1.1 Introduction

The 90-70 5136-PFB-VME interface program PB_0825 mentioned in this article can be completed in just 3ms (CPU915)

120 word slave data exchange. This program is a ladder diagram program that can be obtained through GEFanuc.

This article provides a detailed introduction on how to use the 5136-PFB-VME interface card to connect to the Profibus DP network in a 90-70 PLC.

The interface program PB_0825 mentioned in the article can support two 5136-PFB-VME interface cards. Of course, you can also

This interface program is used in PLC systems with only one interface card.

5136-PFB-VME, as a standard VME module, can be plugged into the central rack of 90-70 PLCs and can be used by 90-70

The programming software configuration is "3" PartyVME ". This interface card uses 256K bytes of standard memory and 1K bytes of short I/O

Storage area.

4.1.2 Hardware Installation

4.1.2.1 Setting Short I/O Address

The 5136-PFB-VME interface card occupies a short address interval of 1K bytes on the VME bus, and this memory interval can be occupied by 90-

Use the VME-Read/Write instruction (AM=29H) in CPU 70 to access. The starting address of this memory area is dialed

Set the 1st to 6th positions of code switch S1, and the switch settings in the following figure will connect the ground of two 5136-PFB-VME modules

The addresses are set to 8000H and 7000H respectively. Here, the interface card with address 8000H is referred to as the first card,

7000H is called the second card.

Short I/O Base Address

Base Address

position 1

Position 2

Position 3

position 4

position 5

position 6

8000H

OFF

ON

ON

ON

ON

ON

7000H

ON

OFF

OFF

OFF

ON

ON

The first card is set to 8000H, and the second card is set to 7000H

These two interface cards can be inserted into any slot on the mainframe, but there must be no empty slots between these two modules and the CPU.


GEFanuc Automation Network and Communication

Profibus DP network

The interface program consists of three basic subroutine blocks: Init_0, Init_1, and Assign. Init_0 is used to initialize the first block

Port card (with an I/O address of 8000H). Init_1 is used to initialize the interface card with an I/O address of 7000H. Assign subroutine

Used to exchange slave data between CPU and interface card.

Due to the internal use of the% L variable in the Init_0, Init_1, and Assign blocks, these three blocks must

Called in PB0 and PB1.

Note: After successfully initializing the first interface card with Init_0, the variable "Init_0_oK" (% T00217) will be set to

1. After successfully initializing the second interface card (with an I/O address of 7000H), the variable 'Init_1_SK'

(% T00233) will be set to 1. Variables% T00209 to% T00256 are reserved for initialization program use, user

Please do not use these variables in the program The variables% L00001 to% L01320 of subroutines PB-0 and PB_1 are assigned

When using program blocks, user programs should use variables with addresses of% L01320 or higher.

Steps:

4.1.3.1 Call the Init_0 and Init_1 subroutine blocks

Wg: Set whether the watchdog of the interface card is working. Fill in 1 to allow the watchdog to work, and fill in 0 to prohibit it from working.

Tx: The data sent from the master station to the slave station (i.e., the output of the slave station) is temporarily stored at the starting address in the% L variable. length

512 words. Its meaning is consistent with the BT parameters. Note that all output data from the slave station is in ascending order of the slave station address

The sequence is arranged in blocks, and the word length of each output data block from the slave station must be a multiple of 4 (for example, on the bus)

There are 4 slave stations with addresses 3, 4, 6, and 8 respectively. If the Tx parameter is% L01750, slave station 3 has 5 bytes

The output data from station 4 has 10 bytes and station 6 has 1 byte. Then the output data block from station 3

%Starting from L01750, the output data from station 4 starts from% L01754, and the output data from station 6 starts from

%Starting from L01762, the output data from station 8 starts from% L01766. Users can calculate each slave station themselves

The offset address of the output data in% L, and then use the MOV instruction to move the actual output data (% Q) to this address

Some% L. However, after the Assign program block is called for the first time, it will automatically calculate the output data of each slave station

%The offsets in L are stored in the TF parameters.

TF: The offset address of the output data block of each slave station calculated after the first call of the Assign program block. long

120 words. If TF=% L01501, calculated according to the above example, then after the first call of the Assign program block,

%L01501=1750,% L01502=1754,% L01503=1762,% L01504=1766. The user program should be in

After assigning the program, use indirect addressing to move the actual output data from the slave station to% L01750,% L01754

%L01762,% L01766. As shown below:

Mov

%O001

@L01501

RF: The offset address of each slave input data block calculated by the Assign program block, which has the same meaning as the TF parameter

Like. Length of 120 words.

Rx: The starting address of the data received by the master station from the slave station (i.e., the input from the slave station) is temporarily stored in the% L variable. long

The degree is 512 words, and its meaning is similar to the TX parameter.

St: Slave station status word, with a length of 120 words. Each status word represents the status of a slave station, with the first word representing the station's location

The status of the slave station with address 0, and the second status word represents the status of the slave station with address 1. The height of the status word

The byte stores the sequence number of the slave station (for example, if there are 4 slave stations on the bus with addresses 3, 4, 6, and 8, then this

The sequence numbers of the slave stations are 0, 1, 2, and 3, respectively. The low byte of the status word contains the current status information of the slave station

If it is 80H, it means that the slave station is working normally; If it is 00H, it means that the slave station has a fault, which may

It is a cable or connector malfunction or configuration error. If the entire status word is FFO0H, it means that the slave is not present

It is configured in the SST Profibus configuration software.

be careful:

If you only have one 5136-PFB-VME interface card in your system, you only need to use the program blocks PB-0 or PB_1

One of them.

  • B&R Power Panel 300/400 Touch Screen
  • Emerson S-series Mass Connection Solutions
  • Emerson DeltaV SIS Logic Solver (SLS1508)
  • Emerson DeltaV Ethernet I/O Card (EIOC)
  • Emerson DeltaV ™ M-series Traditional I/O
  • Emerson DeltaV ™ Electronic Marshalling for Migrations
  • Emerson DeltaV Controller
  • Emerson DeltaV Bulk Power Supplies
  • Emerson DeltaV SD Plus Controller
  • Emerson DeltaV M Series Virtual I/O Module 2 (VIM2)
  • Emerson DeltaV M Series MD Plus Controller
  • Emerson Ovation ™ Power system (5X00785G09)
  • Emerson DeltaV Intelligent Switch
  • Emerson A6110 Dual Channel Shaft Vibration Monitor
  • Emerson MMS 3210 Dual Channel Axial Displacement Transmitter
  • Emerson MMS 3120 Dual Channel Bearing Vibration Transmitter
  • Emerson MMS 677X Dual Channel Bar Chart Indicator
  • Emerson Martens Standard Signal Instrument S 1010
  • Emerson CON021 Eddy Current Signal Converter
  • AMS 6500 Classic System Protection Card
  • Emerson Machine Monitoring Systems RPM Transformer PR 9376
  • Emerson Linear Displacement Sensor PR 9350/.. Series
  • Emerson PR 9376 series eddy current sensor system
  • Emerson Electric Power Absolute Vibration Sensor (PR 9266/.. And PR 9268/..)
  • Emerson Motion Control FX 490
  • Emerson The Ovation ™ Control System
  • Emerson Ovation Distributed Control System Input/Output (I/O) Module
  • Emerson HART High Performance Analog Input Module
  • Emerson Ovation ™ Controller Model OCR1100
  • Emerson PAC8000 Remote I/O
  • Emerson A6500-LC LVDT preamplifier
  • EMERSON A6370 Overspeed Protection Monitor
  • EMERSON A6110 axis relative vibration monitor
  • EMERSON FloBoss ™ S600+ Flow Computer
  • EMERSON CSI 2130 Machinery Health ™ Analyzer
  • AMS 2140 Machinery Health ™ Analyzer
  • Emerson AMS Suite: Machinery Health ™ Manager v5.61 Software Installation Guide
  • GE Fanuc Series 90-30 Programmable Controller
  • GE PACSystems RX7i Controller
  • GE Series 90–70 Genius Bus Controller
  • GE VersaMax ® Programmable controller
  • GE VMIVME-7696 Pentium II processor based on VMEbus single board computer
  • GE VMIVME-7695 Single Slot Pentium II Embedded Module Processor
  • GE VMIVME-7459 Single Slot VME IDE CD-RW/Hard Disk Module
  • GE VMIVME-6016 VMEbus Intelligent 16 Channel Asynchronous Serial Controller
  • GE VMIVME-5620 Intelligent HSD Simulator
  • GE VMIVME-5588 high-speed reflective memory board
  • GE VMIVME-5532L VMEbus fiber optic repeater link
  • GE VMIVME-5531L VMEbus fiber optic repeater link
  • GE VMIVME-4514A 16 channel scanning analog I/O board
  • GE VMIVME-4150 isolated 12 channel 12 bit analog output board
  • GE VMIVME-3126 High Resolution Isolated Analog to Digital Converter Board
  • GE VMIVME-3100 16 channel 12 bit analog-to-digital converter board
  • GE VMIVME-2540 24-Channel Intelligent Counter/Controller
  • GE VMIVME-2511 Programmable I/O Board
  • GE VMIVME-2510B 64 bit TTL digital I/O board
  • GE VMIVME-2128 128 bit high voltage digital output board
  • GE VMIMPC-5790 PMC Dual Channel Ultra160 SCSI Host Adapter
  • GE VMIVME-2170A 32-bit optically isolated digital output board
  • GE VMIPCI-5565 Ultrahigh Speed Fiber-Optic Reflective Memory with Interrupts
  • GE VMIACC-5595 2 Gb/s Reflective Memory Hub Component
  • GE VME-3125A Isolation Scan 12 Bit 32 Channel Analog to Digital Converter Board (6U)
  • GE VME-3122A High Performance 16 Bit Analog to Digital Converter (ADC)
  • GE VMIVME-2536 32 channel optically coupled digital I/O board
  • GE VMIVME-2528 128 bit TTL digital I/O TURBOModule ™
  • GE VMIVME-2232 32 32 channel relay output board
  • GE VMIVME-2210 64 channel latch or momentary relay board
  • GE VMIVME-1182 64 channel isolated digital input board
  • GE VMIVME-1128 128 bit high-voltage digital input board
  • GE VMIVME-111 64 bit High Voltage Digital Input Board
  • GE ACC-0603RC V7865 VME Rear Conversion Module
  • GE V7865 Intel ® Core ™ Duo Processor VME Single Board Computer
  • GE MVME5500 series VME single board computer
  • GE CPCI-7055RC PowerPC ® CompactPCI ® single board computer
  • GE VMIVME-3125 Analog Input Board
  • GE VMIVME-4105 8-Channel 12 Bit Multiplicative Digital to Analog Converter Board
  • GE VMIVME-5565 Ultra High Speed Fiber Reflective Memory (with Interrupt Function)
  • GE VMIVME-3122 High Performance 16 Bit Analog to Digital Converter (ADC)
  • GE VMIVME-2210 Relay Board
  • GE VMIVME-7648 Single Board Computer
  • GE V7768/V7769 hardware
  • GE VMIVME-7807/VME-7807RC Single Board Computer
  • GE VMIVME-7750 Single Board Computer
  • GE FANUC S2K series independent motion controller
  • GE Hydran 201Ti (Mark IV) Transformer Monitoring Equipment
  • GE Hydran M2 (Mark III) Transformer Monitoring Equipment
  • Installation Guide for GE Hydran M2 Transformer Gas Monitoring System
  • GE 10 "/12" QuickPanel View Compact Industrial grade Human Machine Interface (HMI) Computer
  • GE PACSystems RXi EP Box type Industrial Computer (IPC)
  • GE AT868 AquaTrans ™ Ultrasonic water flowmeter
  • GE MLJ synchronous inspection relay
  • GE MII series modular microcomputer relay
  • Bently 3500/15 AC/DC power module
  • Bently 990 vibration transmitter
  • Bently 2300 series vibration monitor
  • Bently 330400 and 330425 acceleration sensors
  • Bently 330500 Velomitor piezoelectric velocity sensor
  • Bently 3500/50M tachometer module
  • Bently 177230 seismic transmitter
  • Bently 3300 XL 8mm Proximity Sensor
  • GE Multilin 889 Generator Protection System
  • GE Multilin 515 Locking and Testing System
  • Bently 3500/20 Rack Interface Module
  • Bently Nevada 3500 Monitoring System Rack Installation and Maintenance
  • Bentley 60M100 Condition Monitoring System
  • Honeywell portable gas detection
  • Honeywell System Sensor L-Series Wall Mounted Sound and Light Alarm Equipment
  • Honeywell SPM Flex Chemical Box Gas Detector
  • Honeywell Midas ®- M gas monitoring system
  • Honeywell Midas-M Multi Gas Transmitter
  • Honeywell Satellite XT gas detection transmitter
  • Honeywell Unipoint DIN Rail Mounted Controller
  • Honeywell System 57 Control for Fire and Gas Detection
  • Honeywell HA72 Digital Gas Controllers
  • Honeywell HA71 Digital Gas Controller
  • Honeywell HA-20, HA-40, and HA-71 gas detection controllers
  • Honeywell Touchpoint Plus Gas Detection and Control System
  • Honeywell Analytics Touchpoint Pro Gas Control System Gas Detection Controller
  • Honeywell Raeguard 2 PID gas detector
  • Honeywell FSL100 series flame detector
  • Danfoss MC024-010 and MC024-012 controllers
  • ABB S500 series heavy-duty circuit breaker
  • ABB PM665 3BDS005799R1 processor module
  • Honeywell Fire Sentry SS2 Flame Detector
  • Honeywell Fire Sentry SS4 Fire and Flame Detector
  • Honeywell FS7 Multi-Spectrum Fire and Flame Detector
  • Honeywell FS10 Fire Detection Systems For Liquid Paint Spray and Electrostatic Powder Coating
  • Honeywell Model FS20X Multi-Spectrum Fire and Flame Detector UV/Dual IR/VIS