K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
Foxboro I/A Series DCS for Feedwater Control Systems
❤ Add to collection

Foxboro I/A Series DCS for Feedwater Control Systems

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

Foxboro I/A Series DCS for Feedwater Control Systems

28756.00
¥28740.00
Weight:4.000KG
Quantity:
(Inventory: 31)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

Foxboro I/A Series DCS for Feedwater Control Systems


Foxboro I/A Series DCS for Feedwater Control Systems

THE COMPETITIVE ADVANTAGE

Invensys Operations Management offers premiere feedwater control systems using the Foxboro® I/A Series® Distributed Control System (DCS). Recent implementations have offered operation philosophy enhancements, improved startup and runtime performance and significant reduction of unplanned unit trip outages.

These advanced control techniques allow for less operator required interaction, more time of automatic control - including during start-up and shut-down when most unit trips are caused - making the entire control system more capable of handling process upset conditions along with normal operation.

BEFORE I/A SERIES AT THE OMAHA PUBLIC POWER DISTRICT

Before the I/A Series DCS was installed on the feedwater controls at the Omaha Public Power District at Fort Calhoun Station, there were many operational challenges. The controls were poorly tuned. Level perturbations were not uncommon during changes in power, with poor low level control.

John Steinke, Senior Nuclear Design Engineer at the facility states that “Having splitrange 3-Element control on the bypass feed water valve as well as the main valve allowed for automated controls to handle the switchover from the bypass to the main valve. This reduced operator direct manual interaction, and thereby reduced operator challenges. We also rotate our Steam Generator Feedwater Pumps. The split range 3-element controls greatly reduce the perturbations associated with rotating those pumps. More precise tuning and control have maximized our unit’s capability factor (ability to produce electricity) while removing undue burden from the Licensed Operators who are operating the system. To date, we have not tripped based on the DCS or garnered extra down time.”

There was a plant transient soon after the controls were installed in which the Hotwell Makeup Valve failed to open. The operators, by that time, overcame their instinct to place the feedwater system in manual, and instead let the controls take action. The feedwater DCS response was called “outstanding.” It would have been a much more stressful event for operations using the pre-DCS controls. There have been multiple similar incidents after which Operations commented that the unit would have tripped if the steam generator level control was not on the DCS.

AFTER I/A SERIES AT TENNESSEE VALLEY AUTHORITY

Scott Gladney, an Electric Engineer at the Tennessee Valley Authority’s Sequoyah facility, attributes smoother operations and the reduction of single points-of-failure to installation of the DCS and feedwater controls.

Mr. Gladney states that “We were able to eliminate over 40 single points-of-failure per unit using the DCS feedwater controls. It also simplified the startup of our second feedwater pump. When starting the second pump, speed balancing used to be an operator-intensive manual procedure. The I/A Series block features allow for the controls to completely balance the pumps in automatic. Our swap over from startup valve to main valve was greatly simplified. It used to be an operator manual swap that took about an hour to perform. It is now an automatic event that occurs on they fly with no specific interaction required. I have seen a valve transfer occur as they were tying a turbine online (and in single element) with no significant level perturbations in the steam generators.”

FEEDWATER CONTROL SYSTEM ENHANCEMENTS

The following are brief descriptions of some of the control enhancements delivered for various feedwater control systems throughout the nuclear industry by the nuclear control system engineering team of Invensys Operations Management.

Enhancement #1 − Redundant Sensor Algorithms

Redundant Sensor Algorithms (RSAs) are utilized to eliminate single point of failure vulnerabilities within the control application and improve reliability and robustness of the system and its ability to automatically control the plant over its full power range for the entire fuel cycle. These allow the system to suffer a partial or complete loss of one of the redundant input signals with minimal or no upset to plant operation or loss of vital plant process information. The redundancy starts at the process measurement transmitters. Multiple, mutually exclusive field devices are used to measure the same plant process variable. These measurements are brought into the control system on separate I/O devices (FBMs), further increasing the reliability of these signals. Care is taken to also ensure that the transmitters are on separate process connections, otherwise they are still vulnerable to a single failure, such as plugged piping or failure of the sensing line piping itself.

Enhancement #2 − Redundant Valve Outputs

Redundant Valve Outputs are utilized to eliminate single point of failure vulnerabilities within the control application and improve reliability and robustness of the system and its ability to automatically control the plant over its full power range for the entire fuel cycle. The I/A Series Fieldbus Modules include the FBM218, which is capable of providing redundant, channel isolated outputs to field devices. If a failure is detected in one of the Fieldbus Modules, its output is driven to 0 mA and the corresponding channel in the tracking module automatically continues supplying the proper current to the output current loop.

Enhancement #3 − Fully Integrated Single Element/Three Element Control Philosophy

Traditionally, the feedwater control system operated in Single Element control at low power using only the Startup Bypass valve to maintain Steam Generator Level. Above ~25% power, a Three Element system was employed using only the Main Feedwater Regulating (MFWR) valve. Steam generator level is more robustly controlled using the three elements of steam flow, feedwater flow, and steam generator level. As reactor power increased from 20% to 25%, operators would perform a manual transfer from the Single Element Start-up Bypass valve to the Three Element MFWR valve. Similarly, as reactor power would decrease from 25 to 20%, operators manually transferred from the Three Element MFWR valve back to the Single Element Start-up Bypass valve. These manual transitions require intense operator involvement, and have been the cause of many unplanned unit trips.


  • ABB 3BHT300009R1 DO620 Digital Output 32ch, 60VDC
  • ABB 3BHT300006R1 DO610 Digital Output 32ch 24VDC
  • ABB 0338434M-REF Refurbished DLM 02, Link module, as of V3
  • ABB DLM01 EXCITATION REDUNDANCY CONTROL SYSTEM
  • ALSTOM V4561484-0100 PCB circuit boards
  • ABB NE870 Network Router 3BSE080239R1
  • ABB DI610 – 32-Channel Digital Input Module for Industrial Automation
  • ABB DDO02 Industrial Digital Output Module
  • ABB 0369627MR DDO01 - DIGITAL OUTPUT
  • ABB DDI03 Module
  • ABB 0369626M-EXC Exchange of DDI 01, Digital input as of V 3
  • ABB Y0338701M DCP10 - CPU MODULE 8 MB
  • ABB DCP02 CPU MODULE
  • ABB 0369629M-REF Refurbished DAO 01, Analog output, as of V3
  • ABB DAI03 Digital Input Module
  • ABB D-20-0-1102 control module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB BRC-300 Bridge Controller and Process Bus Adapter
  • ABB CI520V1 AF100 Communication Interface
  • ABB 3BHT300003R1 CI610 IOB_A Bus Extender for Basic Unit
  • ABB CI615 Controller Module
  • ABB EXC3BSE012868R1 CI626V1 AF100 Communication Interface
  • ABB CI627 Advanced Industrial Control Module
  • ABB 3BSE020520R1 CI810B AF 100 Fieldbus Comm. Interface
  • ABB CP450 Installation and Operation Manual
  • ABB CR-M4LS Logical socket for 2c/o or 4c/o CR-M relay
  • ABB 3HAC14550-2/09A Single servo drive unit
  • ABB 3HAC17326-1/02 Motor M26 Type B
  • ABB 3HNA001572-001 MCCB-02
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNE00313-1 (with 10 m cable and plug)
  • ABB 61615-0-1200000 Panel Controller
  • ABB AI610 – 32 Channel 12-bit Analog Input Module
  • ABB AI625 Analog Input 16ch, 12 Bit, 4-20 mA
  • ABB AI835A System 800xA hardware selector
  • ABB 3BHT300008R1 AO610 Analog Output 16ch, 12bit
  • ABB 3HAB8101-8/08Y Servo Drive Module
  • ABB 3HAC025466-001 Advanced Control Module for Industrial Automation
  • Rolls-Royce Marine AS 5880-PC1002 REV-A DEP. Steering - TENFJORD PCB Card
  • Rolls-Royce 5880-pc1002 Version A Dep Steering Gear-Tenfjord PCB Card 99046
  • Rolls-Royce Marine Lauer LCA 325. P2 PROFIBUS-DP Network Display Panel UN924
  • Rolls-Royce Marine UN924 Digital Display Controller
  • Rolls-Royce UN930 Digital Display Controller 24V
  • Rolls-Royce UN31 ECR Panel 000127603
  • Rolls-Royce Marine AS UN991.1 Distribution Plate
  • Rolls-Royce Propulsion Control Boards
  • Rolls-Royce SLIO 02 Canman controller network
  • Rolls-Royce Electronics 1071 Automatic Display Type No. 07918 B UN 921 ECR 24VDC
  • Rolls-Royce PCC1030C ULSTEIN Panel Controller Card
  • Rolls-Royce KAMEWA Propeller Control Room Panel Basic R160637A
  • Rolls-Royce Ulstein-UMAS V Marine Automation UN925 Panel Controller Roller for Parts
  • Rolls-Royce Marine AS UN921 Operator Panel
  • Rolls-Royce Marine r10I53s / R10I53S Panel Computer 98H0101A0000I Version 1.9
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB 3ASC25H204 DAPU100 high-performance processor module
  • ABB 3ASC25H203 Module
  • ABB 35AE92 – High Performance Industrial Control Module
  • ABB 200900-004 I/O Adaptor PLC Board
  • AB 1794-IE8 FLEX I/O Analog Modules
  • AB 1794-IF8IH FLEX I/O Isolated Input HART Analog Module
  • AB 1794-IE8H FLEX I/O 8 Input HART Analog Module
  • AB 1794-L34 FlexLogix Controller System User Manual
  • AB 1794-OB8 FLEX I/O Digital DC Output Modules
  • AB Enhanced PLC-5 Programmable Controllers
  • AB 1785-BCM and 1785-BEM Modules for PLC-5 Programmable Controllers
  • AB Cat. No. 1785-CHBM ControlNet PLC-5 Hot Backup System
  • AB 1785-ENET PLC-5 Ethernet Interface Module
  • AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers
  • AB 1785-L40E Ethernet PLC-5 Programmable Controllers
  • AB 1785-PFB PLC-5 PROFIBUS Local Station Manager
  • AB 1785 PLC-5 Programmable Controller System
  • AB 1785 um019 PLC-5 Ethernet Interface Module
  • AB 1786 - RPA/B ControlNet Modular Repeater Adapter
  • AB PLC-5 1771 to ControlLogix 1756 I/O Wiring Conversion Systems
  • AB Analog Input Module Cat. No. 1771-IFE
  • AB 1771-IFE A/B/C Analog Input Module
  • AB Cat. No.1771-IVN DC (10-30V) Input Module
  • AB 1771-OFE Series B Analogue Output Modules
  • AB Cat. No.1771-QB Linear Positioning Module
  • AB 1771-VHSC Very High-speed Counter Module
  • AB 1771 Digital I/O AC Input and Output Modules
  • AB 1783 Series Ethernet Taps
  • AB Stratix 8000 and 8300 Ethernet Managed Switches
  • AB MicroLogix 1400 Programmable Controllers
  • AB1642 Module Manual MicroLogix 1500 & CompactLogix Resolver Interface Module
  • AB 1769-L24ER-QB1B CompactLogix 5370 L2 Controllers
  • AB 1769 Compact I/O Modules Specifications
  • AB 1769 Controller CompactLogix System
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controller
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controllers
  • AB 1762-L24AWA MicroLogix 1200 Programmable Controllers
  • AB 1762-IQ8OW6 DC-Input/Relay-Output Combination Module
  • AB 1757-SRM ProcessLogix and ControlLogix System Redundancy Module
  • GE ALSTOM:SPU.232.2.029.366.817
  • AB ProcessLogix R500.1 Process Control System
  • AB 1761 - NET - Ethernet Interface for ENI MicroLogix
  • AB 1761-L20BWB-5A MicroLogix 1000 Series
  • AB 1761 MicroLogix 1000 Programmable Controller
  • AB 1756-DHRIO, 1756-DHRIOXT ControlLogix Data Highway Plus-Remote I/O Communication Interface Module
  • AB 1756-D IO ControlLogix I/O Modules Specifications
  • AB 1756-cpu ControlLogix Systems
  • AB 1756 ControlLogix Analog I/O Modules
  • AB 1756 ControlLogix System
  • AB 1756 IB32 ControlLogix 32-point DC (10…31.2V) Input Module Series B
  • AB 1756-IR6I ControlLogix Analog I/O Modules
  • AB 1756-DNB ControlLogix DeviceNet Scanner Module
  • AB 1756-CN2RXT ControlLogix-XT ControlNet Interface Module
  • AB 1756-CN2 1756-CN2R ControlLogix ControlNet Interface Module
  • AB 1747 - AENTR SLC 500 EtherNet/IP Adapter
  • AB 1746, 1747SLC500 Control System Selection Guide
  • AB 1746-C7, 1746-C9, 1746-C16 SLC 500™ Programmable Controller Rack Interconnect Cables
  • AB 1746-BTM Drum Temperature Control Module
  • AB 1746-BAS and 1746-BAS-T SLC 500 BASIC and BASIC-T Modules
  • AB 1746-A4, -A7, -A10 SLC 500™ Modular Chassis
  • AB SLC 500™ Modular Chassis 1746-A4, -A7, -A10 and -A13 Series B
  • AB 1734-AENT POINT I/O EtherNet/IP Adapter
  • AB Allen-Bradley's 1734 POINT I/O Series Products
  • A-B 1715 Redundant I/O System Specifications
  • AB 56AMXN/B ControlLogix AutoMax DCSNet and AutoMax Remote I/O Communication Interface Module
  • AB Bulletin 1203 Serial Communications Module
  • AB 1326AB High Performance AC Servomotors
  • AB 1326AB 460V, Torque Plus Series, AC Servo Motors
  • AB 1336 PLUS II Engineering Drives
  • AB CENTERLINE® 2100/2400 Series Motor Control Centres
  • AB 1394 Digital AC Multi-Axis Motion Control System
  • AB 1398 ULTRA 100 Series Drives
  • AB 1402 Series Line Synchronisation Modules
  • AB 1407-CGCM Combined Generator Control Module