K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
InstallationGE-369 Motor Management Relay
❤ Add to collection

InstallationGE-369 Motor Management Relay

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

The 369 is contained in a compact plastic housing with the keypad, display,  communication port, and indicators/targets on the front panel. The unit should be  positioned so the display and keypad are accessible. To mount the relay, make cutout and  drill mounting holes as shown below. Mounting hardware (bolts and washers) is provided  with the relay. Although the relay is internally shielded to minimize noise pickup and  interference, it should be mounted away from high current conductors or sources of  strong magnetic fields

28832.00
¥25767.00
Weight:2.200KG
Quantity:
(Inventory: 10)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

The 369 is contained in a compact plastic housing with the keypad, display,  communication port, and indicators/targets on the front panel. The unit should be  positioned so the display and keypad are accessible. To mount the relay, make cutout and  drill mounting holes as shown below. Mounting hardware (bolts and washers) is provided  with the relay. Although the relay is internally shielded to minimize noise pickup and  interference, it should be mounted away from high current conductors or sources of  strong magnetic fields


InstallationGE-369 Motor Management Relay

In this section, the terminals have been logically grouped together for explanatory  purposes. A typical wiring diagram for the 369 is shown above in FIGURE 3–4: Typical  Wiring for Motor Forward/Reversing Application on page 3–37 and the terminal  arrangement has been detailed in FIGURE 3–3: TERMINAL LAYOUT on page 3–36. For  further information on applications not covered here, refer to Chapter : Applications or  contact the factory for further information. Hazard may result if the product is not used for intended purposes. This equipment can  only be serviced by trained personnel. Do not run signal wires in the same conduit or bundle that carries power mains or high  level voltage or currents. 3.3.3 Control Power VERIFY THAT THE CONTROL POWER SUPPLIED TO THE RELAY IS WITHIN THE RANGE  COVERED BY THE ORDERED 369 RELAY’S CONTROL POWER. The 369 has a built-in switchmode supply. It can operate with either AC or DC voltage  applied to it. The relay reboot time of the 369 is 2 seconds after the control power is  applied. For applications where the control power for the 369 is available from the same  AC source as that of the motor, it is recommended an uninterrupted power supply be used  to power up the relay or, alternatively, use a separate DC source to power up.  Extensive filtering and transient protection has been incorporated into the 369 to ensure  reliable operation in harsh industrial environments. Transient energy is removed from the  relay and conducted to ground via the ground terminal. This terminal must be connected  to the cubicle ground bus using a 10 AWG wire or a ground braid. Do not daisy-chain  grounds with other relays or devices. Each should have its own connection to the ground  bus. The internal supply is protected via a 3.15 A slo-blo fuse that is accessible for replacement.  If it must be replaced ensure that it is replaced with a fuse of equal size (see FUSE on page  2–13). 3.3.4 Phase Current (CT) Inputs The 369 requires one CT for each of the three motor phase currents to be input into the  relay. There are no internal ground connections for the CT inputs. Refer to Chapter :  Applications for information on two CT connections.

CHAPTER 3: INSTALLATION ELECTRICAL INSTALLATION 369 MOTOR MANAGEMENT RELAY– INSTRUCTION MANUAL 3–39 The phase CTs should be chosen such that the FLA of the motor being protected is no less  than 50% of the rated CT primary. Ideally, to ensure maximum accuracy and resolution,  the CTs should be chosen such that the FLA is 100% of CT primary or slightly less. The  maximum CT primary is 5000 A. The 369 will measure 0.05 to 20 × CT primary rated current. The CTs chosen must be  capable of driving the 369 burden (see specifications) during normal and fault conditions  to ensure correct operation. See Section 7.4: CT Specification and Selection on page –230  for information on calculating total burden and CT rating. For the correct operation of many protective elements, the phase sequence and CT  polarity is critical. Ensure that the convention illustrated in FIGURE 3–4: Typical Wiring for  Motor Forward/Reversing Application on page 3–37 is followed. 3.3.5 Ground Current Inputs The 369 has an isolating transformer with separate 1 A, 5 A, and sensitive HGF (50:0.025)  ground terminals. Only one ground terminal type can be used at a time. There are no  internal ground connections on the ground current inputs. The maximum ground CT primary for the 1 A and 5 A taps is 5000 A. Alternatively the  sensitive ground input, 50:0.025. can be used to detect ground current on high resistance  grounded systems. The ground CT connection can either be a zero sequence (core balance) installation or a  residual connection. Note that only 1 A and 5 A secondary CTs may be used for the residual  connection. A typical residual connection is illustrated in below. The zero-sequence  connection is shown in the typical wiring diagram. The zero-sequence connection is  recommended. Unequal saturation of CTs, CT mismatch, size and location of motor,  resistance of the power system, motor core saturation density, etc. may cause false  readings in the residually connected ground fault circuit. FIGURE 3–5: Typical Residual Connection

The exact placement of a zero sequence CT to properly detect ground fault current is  shown below. If the CT is placed over a shielded cable, capacitive coupling of phase current  into the cable shield during motor starts may be detected as ground current unless the  shield wire is also passed through the CT window. Twisted pair cabling on the zero  sequence CT is recommended. FIGURE 3–6: Zero Sequence CT 3.3.7 Phase Voltage (VT/PT) Inputs The 369 has three channels for AC voltage inputs each with an internal isolating  transformer. There are no internal fuses or ground connections on these inputs. The  maximum VT ratio is 240:1. These inputs are only enabled when the metering option (M) is  ordered. The 369 accepts either open delta or wye connected VTs (see the figure below). The voltage  channels are connected wye internally, which means that the jumper shown on the delta  connection between the phase B input and the VT neutral terminals must be installed. Polarity and phase sequence for the VTs is critical for correct power and rotation  measurement and should be verified before starting the motor. As long as the polarity  markings on the primary and secondary windings of the VT are aligned, there is no phase


  • ABB IGCT Technology: A Revolutionary Breakthrough in High Voltage Inverters
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® MDS 5000 installation method
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Bently Nevada 3500/65 145988-02 Channel Temperature Monitor
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF RMV-111D undervoltage and overvoltage relay
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • ​GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson S Series Traditional I/O Modules
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNS iS MConnect interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0
  • ABB Panel 800 Version 6 PP885 Hardware and Installation
  • Konica Minolta CM-3700A-U Plus spectrophotometer
  • Schneider FBM233 Field Device System Integrator Module
  • MTL 8502-BI-DP Bus Interface Module (BIM)
  • ABB DO880 Ability ™ System 800xA ® hardware selector
  • GE VMIVME-2540 24 channel intelligent counter/controller
  • GE VMIVME-3115-010 32-Channel 12-bit Analog Output Board
  • GE Fanuc Automation VMIVME-4140 32-Channel 12-bit Analog Output Board
  • BENTLY 1900/65A General Purpose Equipment Monitor
  • REXROTH Digital axis control HNC100
  • GE Grid Solutions 369 Series
  • ZYGO ZMI 7702 laser head
  • ZYGO ZMI 501A shell
  • ABB PFEA111-65 Tension Electronic Equipment
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1747-DCM Direct Communication Module
  • Allen Bradley 1746-NI8 SLC 500 Analog Input Module
  • Allen Bradley 1734 series POINT I/O common terminal module and voltage terminal module
  • Allen Bradley 150 Series SMC Dialog Plus Controller
  • Allen Bradley 1494V series
  • AB Allen Bradley 1492 series terminal block
  • Allen Bradley 1485 Series DeviceNet Media System
  • Allen Bradley 1391-DES series digital AC servo drive
  • Allen Bradley 1336 PLUS II Adjustable Frequency Driver
  • Allen Bradley 1336 IMPACT AC Inverter
  • Allen Bradley 1326AB high-performance AC servo motor
  • Allen Bradley DeviceNet Communication Module (1203-GK5/1336-GM5)
  • Allen Bradley 1203-CN1 ControlNet Communication Module
  • Rockwell Automation PanelView Standard Series Terminal (Model 2711)
  • Siemens SIMATIC S7-300 6ES7322-1BH01-0AA0 Digital Output Module
  • Siemens SIMATIC S7-300 Digital Input Module (6ES7321-1BH02-0AA0)
  • Rockwell Automation 836T Series Differential Pressure Controller
  • Schneider Modicon Quantum 140DRA84000 Discrete Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Modicon Quantum 140XBP01000 racks backplanes
  • ABB NTST01 Time Sync Link TU Time Sync Link Terminal Unit
  • Siemens 6ES7954-8LC02-0AA0 SIMATIC Memory Card
  • Siemens 6ES7511-1AK02-0AB0 SIMATIC S7-1500 CPU 1511-1 PN Central Processing Unit
  • Allen Bradley 1769-L32E (CompactLogix L32E) Programmable Automation Controller
  • Allen-Bradley 2711P-RDT7C PanelView ™ Plus 6 700 Industrial Human Computer Interface
  • Siemens 6AV6642-0DA01-1AX1 SIMATIC OP177B Industrial Human Machine Interface (HMI)
  • Emerson PACSystems RX3i I/O Module
  • Moxa EDS-508A series network managed Ethernet switch
  • Moxa EDS-408A series industrial Ethernet switch
  • ABB TK821V020 (3BSC95020R1) battery cable
  • Sonnax 6R80L-6R100-ZIP Transmission Valve Body Repair Kit
  • Moxa EDS-308 series industrial Ethernet switch
  • ABB Symphony Plus S+Control BRC410 Controller
  • GE Qualitrol IC670ALG230 Analog Input Module
  • ABB DCS series thyristor power converter
  • Schneider Electric Foxboro ™ DCS FBM201/b/c/d analog input module
  • Eaton XV-440-10TVB-1-20 Human Machine Interface (HMI)
  • Bentley Baker Hughes 2300 Series Vibration Monitors
  • Allen-Bradley IMC ™ S Class Compact Motion Controllers (IMC-S/23x model)
  • Siemens 6AV7875-0BC20-1AC0 SIMATIC HMI
  • Siemens 6AV6645-0CB01-0AX0 Mobile Panel
  • Siemens 6DD1607-0AA2 module
  • GE IC693MDL655 Discrete Input Module
  • ABB AI820 3BSE008544R1 Analog Input Module
  • Siemens 6EP1336-3BA10 power module
  • ABB AO810 REP3BSE008522R1 Analog Output Module
  • Siemens SIMATIC S7-400 EXM 438-1 I/O Expansion Module (6DD1607-0CA1)
  • Bently Nevada 3300 XL 8mm Proximity Sensor System
  • MOOG Rugged Motion Controller
  • GE Grid Solutions Hydran M2 (Mark III) Transformer Oil Dissolved Gas and Moisture Monitoring Device
  • Fanuc A16B-3200-0110 CNC System Module
  • ABB PM866AK01 processor unit (3BSE076939R1)
  • ABB MControl Motor and Feedline Control Unit (1TGE120011R1000)
  • ABB DSDP 140B Counter Board (5716001-ACX)
  • ABB M10x Motor Control and Protection Unit (1TNA920500R0002)
  • Foxboro Evo ™ Standard 200 Series Baseplates(PSS 31H-2SBASPLT)
  • Foxboro I/A Series Compact 200 16 Slot Horizontal Substrate (31H2C480B4)