K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
ABB PFCL201 Pressductor Pillowblock Load
❤ Add to collection

ABB PFCL201 Pressductor Pillowblock Load

The load cells are connected to the control unit via a junction box. The control unit converts the

load cell signals to DC voltages that are proportional to the reaction force. Depending on which

control unit is chosen, it is possible to have the analog signals for the two individual load cells (A

and B), the sum of the load cell signals (A+B), and/or the difference between the load cell signals(A-B).

19888.00
¥18888.00
Weight:10.000KG
Quantity:
(Inventory: 22)
Consultation
Accessories
  • ABB-MNS iS motor
    Original :¥174373.00
    With a price :¥174373
    Quantity  
  • ABB-MNS iS desig
    Original :¥153472.00
    With a price :¥153472
    Quantity  
  •   
    Original :¥
    0.00
      
      With the total price :¥
    0.00
Description

The load cells are connected to the control unit via a junction box. The control unit converts the

load cell signals to DC voltages that are proportional to the reaction force. Depending on which

control unit is chosen, it is possible to have the analog signals for the two individual load cells (A

and B), the sum of the load cell signals (A+B), and/or the difference between the load cell signals(A-B).




ABB PFCL201 Pressductor Pillowblock Load
Load Cells PFCL 201

The load cells are installed under the roll bearings, where they measure forces at right angles to the
mounting surface.
The reactive force from the strip, which is proportional to the strip tension, is transferred to the load
cells via the roll and the bearings.
The load cells are connected to the control unit via a junction box. The control unit converts the
load cell signals to DC voltages that are proportional to the reaction force. Depending on which
control unit is chosen, it is possible to have the analog signals for the two individual load cells (A
and B), the sum of the load cell signals (A+B), and/or the difference between the load cell signals(A-B).
1.3.3 Principle of Measurement
The load cell only measures force in the direction FR. The measurement force may be positive or
negative. The load cell is normally installed under the roll bearings. When there is a strip in tension
over the roll, the tension (T) gives rise to two force components, one in the direction of measure ment of the load cell (FR) and one at right angles (FV).
The measuring force depends on the relationship between the tension (T) and the wrap angle

formed by the strip around the measuring roll.
General

The load cell is machined from a single piece of stainless steel. The sensors are machined directly
in the piece of steel and are positioned so that they are sensitive to force in the direction of meas urement and insensitive in other directions.
The load cell is mounted on a base with four screws, and the bearing housing is mounted on top
of the load cell with four screws.
Every load cell comes calibrated and temperature compensated.
The load cells PFCL 201C/201CE/201CD are available in four measurement ranges, all variants
have the same external dimensions.
The load cell PFCL 201C is equipped with a connector for the pluggable connection cable.
The load cell PFCL 201CE has a fiWed connection cable with protective hose.
The load cell PFCL 201CD is provided with an acid-proof cable gland with a fiWed PTFE- insulated
connection cable.


Technical Data
Table 1 Technical Data Load Cell PFCL 201
PFCL 201 Type Data Unit
Nominal Loads 1)
Nominal load in measuring direc tion, Fnom
C/CD/CE 5 10 20 50 kN
Permitted transverse force within
the accuracy, FVnom (for h = 300mm)
2,5 5 10 25
Permitted axial load within the
accuracy, FAnom (for h = 300 mm)
1,25 2,5 5 12.5
Extended load in measuring direc tion with accuracy class ±1%, Fext7,5 15 30 75
Max permitted load
In the direction of measurement
without permanent change of data,Fmax2)
C/CD/CE 50 100 200 5003) kN
In the transverse direction without
permanent change of data, FVmax2)
(for h = 300 mm)
12,5 25 50 125
Spring constant C/CD/CE 250 500 1000 2500 kN/mm
Mechanical data
Length C/CD/CE 450 mm
Width C 110
CD 138
CE 156
Height C/CD/CE 124,6
Weight 37 kg
Material C/CD/CE Stainless steel SIS 2387 DIN X4CrNiMo 165
Accuracy
Accuracy class C/CD/CE ± 0,5 %
Linearity deviation < ± 0,3
Repeatability error < ± 0,05
Hysteresis <0,2
Compensated temperature range +20 - +80 °C
Zero point drift 50 ppm/K
Sensitivity drift 100
Working temperature range -10 - +90 °C
Zero point drift 100 ppm/K
Sensitivity drift 200
Storage temperature range -40 - +90 °C
1) #efinHtHons of directions designations “V
”and “A” in FVand
FA are given in Section 2.5.1 Coordinate System.
Pressductor Systemh
2) Fmax and FVmax are allowed at the same time.
3) Max. permitted load for the load cell is 10 × Fnom. The
overload capacity for the total installation may be limited by
the screws.
Repeatability error
Repeatability error is defined as the maximum deviation between repeated readings under identical
conditions. It is expressed as a percentage of the sensitivity at nominal load.
Compensated temperature range
The temperature drifts of the load cell have been compensated for in certain temperature
ranges. That is the temperature range within which the specHfied permitted temperature drifts (i.e.
zero point and sensitivity drifts) of the load cell are maintained.
Working temperature range
Working temperature range is the temperature range within which the load cell can operate within
a specHfied accuracy. The maximum permitted temperature drifts (i.e. zero point and sensitivity
drifts) of the load cell are not necessarily maintained in the whole working temperature range.
Storage temperature range
Storage temperature range is the temperature range within which the load cell can be stored.
Zero point drift with temperature
Zero point drift is defined as the signal change with temperature, related to the sensitivity, when
there is zero load on the load cell.
Sensitivity drift with temperature
Sensitivity drift is defined as the signal change with temperature at nominal load, related to the sen sitivity, excluding the zero point drift.
  • Kollmorgen AKD/S700 series servo drive
  • KOLLMORGEN digifas ™ 7200 series digital servo amplifier
  • Kollmorgen SERVOSTAR ® CD series digital servo motor amplifier
  • MOOG M3000 ® Control System QAIO 16/4 Analog I/O Extension Module
  • MOOG G128-809A POWER SUPPLY
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • MOTOROLA MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Reliance Electric DCS 5000 Enhanced BASIC Programming Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRIC GV3000/SE AC Drive (Version 6.06)
  • ABB SACO 16D1 Annunciator unit
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP30.2/40.2/50.2 series embedded terminals
  • REXROTH IndraDyn S MSK Synchronous Motors
  • REXROTH 4WRPEH series direct acting directional valve
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel
  • REXROTH MKD series explosion-proof synchronous motor
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP 16.3, VDP 40.3, VDP 60.3 Operator Display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC01.1/DKC11.1 Drive Controllers
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller and Supporting LTH Power Unit
  • REXRTOH RAC 2 Series Spindle Drive Controller and CDH1/CGH1/CSH1 Series Milling Machine Hydraulic Cylinder
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motors
  • REXRTOH DIAX04 HDD and HDS Drive Controllers 2nd Generation
  • Rexroth EcoDrive 03 Series Drive Controller
  • REXRTOH Drive Controllers Control Sections CSB01, CSH01, CDB01
  • REXRTOH Axial piston variable pump A4VG Series 40
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital control electronics for axial piston pumps
  • REXRTOH HNC100-3X: Industrial Hydraulic and Hybrid Drive Controller
  • ABB Advant® OCS Open Control System Advant Controller 250
  • ABB QABP series low-voltage high-efficiency variable frequency dedicated motor
  • ABB AX400 series conductivity analyzer
  • ABB S500 Series Distributed Automation I/O Hardware Technical Manual
  • ABB AC500 Series PLC Module Wiring Guide Manual
  • ABB REG216/REG216 Classic Numerical Generator Protection
  • SIEMENS SIRIUS Domestic Series Control and Protection Products
  • Siemens SIMATIC SMART LINE V5 series HMI panel
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • SIEMENS 5SN series terminal distribution product family
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Siemens SIMATIC TI505/TI500 MODNIM module
  • Siemens SIMATIC ET 200SP Distributed I/O System
  • SIEMENS 5SY/5SP series miniature circuit breakers
  • Siemens SENTRON 5SY series terminal distribution
  • Siemens SIPROTEC 4 series protective relay
  • SIEMENS MICROMASTER 3rd generation Drive ES PCS7 block library DRVPCS7 SIMO_MM3 block
  • Siemens SINAMICS A10 Servo Drive System Operating Instructions
  • SIEMENS SITOP power supplies SITOP UPS1600 / UPS1100
  • SIEMENS SICAM Substation Automation
  • SIEMENS SENTRON Circuit Protection Equipment with Communication and Measurement Functions
  • SIEMENS MOBY I Configuration, Installation and Service
  • SIEMENS SIMATIC NET S7-1413 Industrial Communication Software Package
  • SINUMERIK System 800 General Interface Planning Guide
  • SIEMENS SINUMERIK 840C SIMODRIVE 611-D Installation Instructions
  • SIEMENS SIMATIC S5 S5-115U Programmable Controller
  • SIEMENS SIMATIC RF120C Communication Module Operation Guide
  • SIEMENS SIMADYN D Hardware Usage Guide
  • SIEMENS SIMATIC HMI Touch Panel TP 170A, TP 170B Operator Panel OP 170B
  • SIEMENS SIMATIC TI505/TI500 MODNIM User Manual
  • SIEMENS SIMATIC S7-1500 S7-PLCSIM Advanced
  • SIEMENS 1FK6 series three-phase servo motor
  • SIEMENS SIMATIC S7-300 Beginner's Guide
  • SIEMENS 3AH3 series vacuum circuit breaker
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA Commercial Split Variable Frequency Air Conditioning (DI) Series
  • TEKTRONIX 5400 Series Oscilloscope: Classic Integration of Plug in Architecture and CRT Reading Technology
  • TOSHIBA PRODUCT GUIDE Discrete IGBTs
  • G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon™ v9–v11 Systems Planning and Installation Guide
  • Fault tolerant controller based on Triconex Triple Modular Redundancy (TMR) architecture
  • Pepperl+Fuchs H-System and Schneider Electric Tricon CX
  • Technical specifications and applications of Woodward EM-80/EM-300 all electric actuator system
  • Woodward EM-80/EM-300 actuator system
  • The TRICONEX Trident series: a benchmark for redundant architecture in industrial safety instrumented systems
  • TRICONEX Trident Series Industrial Safety Instrumented Systems
  • SCHNEIDER Magelis XBT GT/GK/GH Series Human Machine Interface (HMI) Hardware Guide
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER Back-UPS ™ Pro 550/900/1200/1500 230V Installation and Operation
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • SCHNEIDER ComPacT NSX DC Circuit Breaker 100-1200 A and Isolating Switch 100-630 A
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Modicon Quantum Safety PLC safety programmable logic controller
  • SCHNEIDER Modicon Quantum Automation Series
  • SEW MOVIDRIVE ® MD-60A industrial grade frequency converter
  • SEW MOVIDRIVE ® Technology application frequency converter
  • SEW MOVIDYN ® servo controller
  • SEW MOVIDRIVE ® MDX60B/61B frequency converter
  • SEW MOVITRAC ® B frequency converter
  • SHINKAWA VM-5 Series Monitor
  • Toshiba TE3 Series Low Voltage Digital Solid State Soft Starter User Manual
  • TOSHIBA N300 Pro NAS Internal Hard Drive
  • TOSHIBA N300 series NAS hard drive
  • TOSHIBA e-STUDIO series multifunctional digital system
  • TOSHIBA V200 Series Programmable Logic Controllers
  • TOSHIBA Unified Controller nv series™ Unified Controller nv series™
  • TOSHIBA PRODUCT GUIDE Discrete IGBTs
  • Toshiba Integrated Control System V Series Selection Manual
  • TOSBERT VF-AS3 Industrial Inverter Quick Start Manual
  • TOSHIBA VRF Dx coil interface device Service Manual