K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
ABB AO2000-LS25 Laser analyzers
❤ Add to collection

ABB AO2000-LS25 Laser analyzers

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

The analyzer is an optical instrument for continuous in-situ gas monitoring in stack, pipes,process chambers or similar and is based on tunable diode laser absorption spectroscopy

(TDLAS). The analyzer utilizes a transmitter/receiver configuration (mounted diametrically

opposite each other) to measure the average gas concentration along the line-of-sight path.

22500.00
¥22500.00
Weight:5.600KG
Quantity:
(Inventory: 20)
Consultation
Accessories
  • MOOG-G122-829A00
    Original :¥28283.00
    With a price :¥28283
    Quantity  
  • Motorola-MVME550
    Original :¥37774.00
    With a price :¥37774
    Quantity  
  •   
    Original :¥
    0.00
      
      With the total price :¥
    0.00
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

The analyzer is an optical instrument for continuous in-situ gas monitoring in stack, pipes,process chambers or similar and is based on tunable diode laser absorption spectroscopy

(TDLAS). The analyzer utilizes a transmitter/receiver configuration (mounted diametrically

opposite each other) to measure the average gas concentration along the line-of-sight path.




ABB AO2000-LS25 Laser analyzers

The analyzer is an optical instrument for continuous in-situ gas monitoring in stack, pipes,
process chambers or similar and is based on tunable diode laser absorption spectroscopy
(TDLAS). The analyzer utilizes a transmitter/receiver configuration (mounted diametrically
opposite each other) to measure the average gas concentration along the line-of-sight path.
The measuring principle is infrared single-line absorption spectroscopy, which is based on
the fact that each gas has distinct absorption lines at specific wavelengths. The measuring

principle is illustrated in Figure 1-1. The laser wavelength is scanned across a chosen absorp tion line of the gas to be measured.
The absorption line is carefully selected to avoid cross

interference from other (background) gases. The detected light intensity varies as a function
of the laser wavelength due to absorption of the targeted gas molecules in the optical path
between transmitter and receiver. In order to increase sensitivity the wavelength modulation

technique is employed: the laser wavelength is slightly modulated while scanning the absorp tion line. The detector signal is
spectrally decomposed into frequency components at har monics of the laser modulation frequency. The second harmonics
of the signal is used tomeasure the concentration of the absorbing gas. The line amplitude and line width are both

extracted from the second harmonics line shape, which makes the measured concentration
insensitive to line shape variations (line broadening effect) caused by background gases.
NOTE: The analyzer measures the concentration of only the FREE molecules of the specific

gas, thus not being sensitive to the molecules bound with some other molecules into com plexes and to the molecules attached to or
dissolved in particles and droplets. Care should be

taken when comparing the measurements with the results from other measurement tech niques.


1.3 Instrument description
The analyzer consists of 3 separate units (see Figure 1-2):
Transmitter unit with purging
Receiver unit with purging
Power supply unit
Transmitter unit

The transmitter unit contains the laser module with a temperature stabilized diode laser, col limating optics, and the main electronics in a coated Aluminum box.
The receiver unit con tains a focusing lens, the photodetector and the receiver electronics in a coated Aluminum

box. Both transmitter and receiver units have environmental protection IP66, and the standard op tical windows withstand pressures up to 5 bar (absolute pressure). The monitor is installed
by assembling the transmitter and receiver units with the supplied purging & alignment
units, which in turn are mounted onto the DN50 process flanges (see
Figure 3-1). The optical alignment is easy and reliable, and the purging prevents dust and
other contamination from settling on the optical windows.
A block diagram of AO2000-LS25 is shown in Figure 1-3.
The power supply unit transforms 100-240 V AC to 24 V DC (if 24 VDC is available it can be

supplied directly to the transmitter unit). The power supply box is connected to the transmit ter box with a cable. The 4–20 mA input signals from external
gas temperature/pressure sen sors can be connected to the screw terminals inside the power box or directly to the cable

connector on the transmitter unit.

The receiver electronics is connected with the transmitter electronics with a cable. The de tected absorption signal from the photodetector is amplified and
 transferred to the trans mitter unit through this cable. The same cable transfers the required power from the trans mitter unit to the receiver unit.

The transmitter Al box contains the major part of the electronics. The CPU board performs all
instrument control and calculation of the gas concentration. The main board incorporates all
electronics required for instrument operation such as diode laser current and temperature
control and analogue-to-digital signal conversion. A display (LCD) continuously displays the
gas concentration, laser beam transmission and instrument status. The RS-232 port can be
used for direct serial communication with a PC. The optional Ethernet board provides TCP/IP
comm
1.4 Software
Software for the analyzer consists of 2 programs:
1. A program hidden to the user and integrated in the CPU electronics, running the micro
controller on the CPU card. The program performs all necessary calculations and self monitoring tasks.
2. A Windows based program running on a standard PC connected through the RS-232
connection. The program enables communication with the instrument during installa tion, service and calibration.
The operator will need to use the PC based program only during installation and calibration
and not during normal operation of the instrument. See Section 4 for more details.
1.5 Laser classification and warnings
The diode lasers used in the analyzer operate in the near infrared (NIR) range between 700
and 2400 nm depending on the gas to be measured.
Laser Class 1M for sample component O2
Laser Class 1 for all other sample components
according to IEC 60825-1.
NOTE: The lasers emit invisible light!
WARNING: Class 1M Laser Product – Do not open when energized! Do not view directly with
optical instruments!
WARNING: Class 1 Laser Product – Do not open when energized!
2 Preparations
2.1 Tools and other equipment
The following equipment is necessary to install and calibrate the equipment:
2 pcs open-end spanners for M16 bolts
1 pcs Allen key 5 mm for the locking screws on flanges
1 pcs PC (386 or higher). Used during installation and calibration
1 pcs flat screwdriver 2.5 mm for electrical connections
2.2 Flow conditions at measuring point
When deciding the placement of the analyzer in the process, we recommend a minimum of 5
stack diameters of straight duct before and 2 stack diameters of straight duct after the
point of measure.
2.3 Monitor placement
Both the transmitter and receiver units should be easily accessible. A person should be able
to stand in front of either the transmitter unit or the receiver unit and adjust the M16 fixing
bolts using two standard spanners. For the receiver unit there should be at least 1 m free
space measured from the flange fixed to the stack and outwards as shown in Figure 2-1.
  • ABB 3BHT300009R1 DO620 Digital Output 32ch, 60VDC
  • ABB 3BHT300006R1 DO610 Digital Output 32ch 24VDC
  • ABB 0338434M-REF Refurbished DLM 02, Link module, as of V3
  • ABB DLM01 EXCITATION REDUNDANCY CONTROL SYSTEM
  • ALSTOM V4561484-0100 PCB circuit boards
  • ABB NE870 Network Router 3BSE080239R1
  • ABB DI610 – 32-Channel Digital Input Module for Industrial Automation
  • ABB DDO02 Industrial Digital Output Module
  • ABB 0369627MR DDO01 - DIGITAL OUTPUT
  • ABB DDI03 Module
  • ABB 0369626M-EXC Exchange of DDI 01, Digital input as of V 3
  • ABB Y0338701M DCP10 - CPU MODULE 8 MB
  • ABB DCP02 CPU MODULE
  • ABB 0369629M-REF Refurbished DAO 01, Analog output, as of V3
  • ABB DAI03 Digital Input Module
  • ABB D-20-0-1102 control module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB BRC-300 Bridge Controller and Process Bus Adapter
  • ABB CI520V1 AF100 Communication Interface
  • ABB 3BHT300003R1 CI610 IOB_A Bus Extender for Basic Unit
  • ABB CI615 Controller Module
  • ABB EXC3BSE012868R1 CI626V1 AF100 Communication Interface
  • ABB CI627 Advanced Industrial Control Module
  • ABB 3BSE020520R1 CI810B AF 100 Fieldbus Comm. Interface
  • ABB CP450 Installation and Operation Manual
  • ABB CR-M4LS Logical socket for 2c/o or 4c/o CR-M relay
  • ABB 3HAC14550-2/09A Single servo drive unit
  • ABB 3HAC17326-1/02 Motor M26 Type B
  • ABB 3HNA001572-001 MCCB-02
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNE00313-1 (with 10 m cable and plug)
  • ABB 61615-0-1200000 Panel Controller
  • ABB AI610 – 32 Channel 12-bit Analog Input Module
  • ABB AI625 Analog Input 16ch, 12 Bit, 4-20 mA
  • ABB AI835A System 800xA hardware selector
  • ABB 3BHT300008R1 AO610 Analog Output 16ch, 12bit
  • ABB 3HAB8101-8/08Y Servo Drive Module
  • ABB 3HAC025466-001 Advanced Control Module for Industrial Automation
  • Rolls-Royce Marine AS 5880-PC1002 REV-A DEP. Steering - TENFJORD PCB Card
  • Rolls-Royce 5880-pc1002 Version A Dep Steering Gear-Tenfjord PCB Card 99046
  • Rolls-Royce Marine Lauer LCA 325. P2 PROFIBUS-DP Network Display Panel UN924
  • Rolls-Royce Marine UN924 Digital Display Controller
  • Rolls-Royce UN930 Digital Display Controller 24V
  • Rolls-Royce UN31 ECR Panel 000127603
  • Rolls-Royce Marine AS UN991.1 Distribution Plate
  • Rolls-Royce Propulsion Control Boards
  • Rolls-Royce SLIO 02 Canman controller network
  • Rolls-Royce Electronics 1071 Automatic Display Type No. 07918 B UN 921 ECR 24VDC
  • Rolls-Royce PCC1030C ULSTEIN Panel Controller Card
  • Rolls-Royce KAMEWA Propeller Control Room Panel Basic R160637A
  • Rolls-Royce Ulstein-UMAS V Marine Automation UN925 Panel Controller Roller for Parts
  • Rolls-Royce Marine AS UN921 Operator Panel
  • Rolls-Royce Marine r10I53s / R10I53S Panel Computer 98H0101A0000I Version 1.9
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB 3ASC25H204 DAPU100 high-performance processor module
  • ABB 3ASC25H203 Module
  • ABB 35AE92 – High Performance Industrial Control Module
  • ABB 200900-004 I/O Adaptor PLC Board
  • AB 1794-IE8 FLEX I/O Analog Modules
  • AB 1794-IF8IH FLEX I/O Isolated Input HART Analog Module
  • AB 1794-IE8H FLEX I/O 8 Input HART Analog Module
  • AB 1794-L34 FlexLogix Controller System User Manual
  • AB 1794-OB8 FLEX I/O Digital DC Output Modules
  • AB Enhanced PLC-5 Programmable Controllers
  • AB 1785-BCM and 1785-BEM Modules for PLC-5 Programmable Controllers
  • AB Cat. No. 1785-CHBM ControlNet PLC-5 Hot Backup System
  • AB 1785-ENET PLC-5 Ethernet Interface Module
  • AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers
  • AB 1785-L40E Ethernet PLC-5 Programmable Controllers
  • AB 1785-PFB PLC-5 PROFIBUS Local Station Manager
  • AB 1785 PLC-5 Programmable Controller System
  • AB 1785 um019 PLC-5 Ethernet Interface Module
  • AB 1786 - RPA/B ControlNet Modular Repeater Adapter
  • AB PLC-5 1771 to ControlLogix 1756 I/O Wiring Conversion Systems
  • AB Analog Input Module Cat. No. 1771-IFE
  • AB 1771-IFE A/B/C Analog Input Module
  • AB Cat. No.1771-IVN DC (10-30V) Input Module
  • AB 1771-OFE Series B Analogue Output Modules
  • AB Cat. No.1771-QB Linear Positioning Module
  • AB 1771-VHSC Very High-speed Counter Module
  • AB 1771 Digital I/O AC Input and Output Modules
  • AB 1783 Series Ethernet Taps
  • AB Stratix 8000 and 8300 Ethernet Managed Switches
  • AB MicroLogix 1400 Programmable Controllers
  • AB1642 Module Manual MicroLogix 1500 & CompactLogix Resolver Interface Module
  • AB 1769-L24ER-QB1B CompactLogix 5370 L2 Controllers
  • AB 1769 Compact I/O Modules Specifications
  • AB 1769 Controller CompactLogix System
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controller
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controllers
  • AB 1762-L24AWA MicroLogix 1200 Programmable Controllers
  • AB 1762-IQ8OW6 DC-Input/Relay-Output Combination Module
  • AB 1757-SRM ProcessLogix and ControlLogix System Redundancy Module
  • GE ALSTOM:SPU.232.2.029.366.817
  • AB ProcessLogix R500.1 Process Control System
  • AB 1761 - NET - Ethernet Interface for ENI MicroLogix
  • AB 1761-L20BWB-5A MicroLogix 1000 Series
  • AB 1761 MicroLogix 1000 Programmable Controller
  • AB 1756-DHRIO, 1756-DHRIOXT ControlLogix Data Highway Plus-Remote I/O Communication Interface Module
  • AB 1756-D IO ControlLogix I/O Modules Specifications
  • AB 1756-cpu ControlLogix Systems
  • AB 1756 ControlLogix Analog I/O Modules
  • AB 1756 ControlLogix System
  • AB 1756 IB32 ControlLogix 32-point DC (10…31.2V) Input Module Series B
  • AB 1756-IR6I ControlLogix Analog I/O Modules
  • AB 1756-DNB ControlLogix DeviceNet Scanner Module
  • AB 1756-CN2RXT ControlLogix-XT ControlNet Interface Module
  • AB 1756-CN2 1756-CN2R ControlLogix ControlNet Interface Module
  • AB 1747 - AENTR SLC 500 EtherNet/IP Adapter
  • AB 1746, 1747SLC500 Control System Selection Guide
  • AB 1746-C7, 1746-C9, 1746-C16 SLC 500™ Programmable Controller Rack Interconnect Cables
  • AB 1746-BTM Drum Temperature Control Module
  • AB 1746-BAS and 1746-BAS-T SLC 500 BASIC and BASIC-T Modules
  • AB 1746-A4, -A7, -A10 SLC 500™ Modular Chassis
  • AB SLC 500™ Modular Chassis 1746-A4, -A7, -A10 and -A13 Series B
  • AB 1734-AENT POINT I/O EtherNet/IP Adapter
  • AB Allen-Bradley's 1734 POINT I/O Series Products
  • A-B 1715 Redundant I/O System Specifications
  • AB 56AMXN/B ControlLogix AutoMax DCSNet and AutoMax Remote I/O Communication Interface Module
  • AB Bulletin 1203 Serial Communications Module
  • AB 1326AB High Performance AC Servomotors
  • AB 1326AB 460V, Torque Plus Series, AC Servo Motors
  • AB 1336 PLUS II Engineering Drives
  • AB CENTERLINE® 2100/2400 Series Motor Control Centres
  • AB 1394 Digital AC Multi-Axis Motion Control System
  • AB 1398 ULTRA 100 Series Drives
  • AB 1402 Series Line Synchronisation Modules
  • AB 1407-CGCM Combined Generator Control Module