K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
MOOG-G122-829A001-P-I Servoamplifier
❤ Add to collection

MOOG-G122-829A001-P-I Servoamplifier

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

These Application Notes are a guide to applying the  G122-829A001 P-I Servoamplifier. These Application Notes  can be used to: Determine the closed loop structure for your application. Select the G122-829A001 for your application. Refer also  to data sheet G122-829. Use these Application Notes to determine your system  configuration. Draw your wiring diagram. Install and commission your system. Aspects, such as hydraulic design, actuator selection, feedback  transducer selection, performance estimation, etc. are not  covered by these Application Notes. The G122-202 Application  Notes (part no C31015) cover some of these aspects. Moog  Application Engineers can provide more detailed assistance,  if required.

18384.00
¥28283.00
Weight:33.000KG
Quantity:
(Inventory: 121)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

These Application Notes are a guide to applying the  G122-829A001 P-I Servoamplifier. These Application Notes  can be used to: Determine the closed loop structure for your application. Select the G122-829A001 for your application. Refer also  to data sheet G122-829. Use these Application Notes to determine your system  configuration. Draw your wiring diagram. Install and commission your system. Aspects, such as hydraulic design, actuator selection, feedback  transducer selection, performance estimation, etc. are not  covered by these Application Notes. The G122-202 Application  Notes (part no C31015) cover some of these aspects. Moog  Application Engineers can provide more detailed assistance,  if required.


MOOG-G122-829A001-P-I Servoamplifier

2 Description The G122-829A001 is a general purpose, user configurable, P-I servoamplifier. Selector switches inside the amplifier enable  either proportional control, integral control, or both to be  selected. Many aspects of the amplifier’s characteristics can  be adjusted with front panel pots or selected with internal  switches. This enables one amplifier to be used in many  different applications. Refer also to data sheet G122-829.

3 Installation 3.1 Placement A horizontal DIN rail, mounted on the vertical rear surface  of an industrial steel enclosure, is the intended method of  mounting. The rail release clip of the G122-829A001 should  face down, so the front panel and terminal identifications  are readable and so the internal electronics receive a cooling  airflow. An important consideration for the placement of the module  is electro magnetic interference (EMI) from other equipment  in the enclosure. For instance, VF and AC servo drives  can produce high levels of EMI. Always check the  EMC compliance of other equipment before placing  the G122-829A001 close by.

3.2 Cooling Vents in the top and bottom sides of the G122-829A001 case  provide cooling for the electronics inside. These vents should  be left clear. It is important to ensure that equipment below  does not produce hot exhaust air that heats up the G122-829.

3.3 Wiring The use of crimp “boot lace ferrules” is recommended for the  screw terminals. Allow sufficient cable length so the circuit  card can be withdrawn from its case with the wires still  connected. This enables switch changes on the circuit card  to be made while the card is still connected and operating.  An extra 100mm, for cables going outside the enclosure,  as well as wires connecting to adjacent DIN rail units,  is adequate. The screw terminals will accommodate wire sizes from  0.2mm2 to 2.5mm2 (24AWG to 12AWG). One Amp rated,  0.2mm2 should be adequate for all applications.

3.4 EMC The G122-829A001 emits radiation well below the level called  for in its CE mark test. Therefore, no special precautions are  required for suppression of emissions. However, immunity from  external interfering radiation is dependent on careful wiring  techniques. The accepted method is to use screened cables for  all connections and to radially terminate the cable screens, in  an appropriate grounded cable gland, at the point of entry into  the industrial steel enclosure. If this is not possible, chassis  ground screw terminals are provided on the G122-829A001.  Exposed wires should be kept to a minimum length. Connect  the screens at both ends of the cable to chassis ground.

6.2 Input 1 An input to the error amplifier: This input is ±10V  non-inverting and has two important features:  It has a scale pot on its input that enables large inputs to be  scaled down to match smaller signals on other inputs. Scale  range is 10 to 100%. Set fully clockwise (FCW), an input of  100V can match a 10V signal on the other inputs. Note that  the maximum permissable input voltage is ±95V.  It has a switch selectable (SW4:2) lag of 55mS that can be  used to remove transients from the input signal that could  cause unwanted rapid movement in the output. Input 1 is well suited to be a command because of these two  features. If input 1 is used for feedback, be sure the lag is  switched off. Input resistance after the scale pot is 94k Ohms. 6.3 Input 2 An input to the error amplifier: This input is differential, with  non-inverting and inverting inputs. It is switch selectable (SW5)  between 4-20mA and ±10V. The 4-20mA converter produces  0 to +10V for 4 to 20mA input to terminal 7. R34 connects  from the output of the amplifier to the input of the error amp.  It is a plug-in resistor with a default value of 100k Ohms,  giving a nominal ±10V input signal range when V is selected.  Input 2 is suitable for command or feedback. R34 can be  increased to give a larger input range. Terminal 8. the inverting input, can be connected to ground  with SW6:1. 6.4 Input 3 An input to the output summing and limiting amplifier via a  plug-in resistor, R33. A typical use for this input is command  feed forward or closing the outer loop of a three stage valve.  With R33 at 10k Ohm, a ±10V input will produce ±100% valve  drive. Increasing R33 reduces the valve drive. The summing amp gain can be changed with plug-in resistor  R27. This is useful if input 3 is being used to close the outer  loop of a three stage valve. 7 Output configuration Select the output to match the input requirements of the valve  (SW2).  When voltage (V) is selected, ±10V is available into a  minimum load of 200 Ohm.  When current (I) is selected, the current level switches  (SW1:X) enable ±5 to ±100mA to be selected. The switch  selections sum, so, if for instance 45mA is required, select  30.10 and 5. The output can drive all known Moog valves  up to ±100mA. The maximum load at I (Amp) output is: RL max = 11V – 39 Ohm I (Amp) eg. at 50mA RL max is 181 Ohm  When 4-20mA is selected, the output V/I switches must be  in I and the output current SW1 must have switch 3 selected  for 20mA. Maximum load for 4-20mA output is 500 Ohm. The output amplifier is limited to approximately 105% of the  selected full scale output. If both the proportional and  integrator stages are saturated, the output will not be twice  the selected full scale but still only 105% of full scale. 8 Step push button The step push button (SW3) injects -50% valve drive  disturbance into the output. When released, the valve drive  reverts to its original level. This feature is useful for closed loop  gain optimisation.

9 P-I selection For position closed loops, initially select only P (SW6:2). For  pressure or velocity loops select I (SW6:4) initially and then P.  See paragraph 12 below for more detail. For a complete  discussion of P and I control, see the G122-202 servoamplifier  Application Notes (part no C31015). 10 Integrator input The servoamplifier has a unity gain input error amplifier  followed by two parallel stages, one a proportional amplifier  and the other an integrator. The outputs of these two stages  can be switched to the output power amplifier (see paragraph  7 above) which then drives the valve. The input to the integrator stage can be switch selected  (SW4:1) from either the output of the error amplifier, I in = E,  or the output of the proportional stage, I in = P. The latter  arrangement is used in the G122-202. It is beyond the scope  of these Application Notes to detail the benefits of each  arrangement. If you have experience with the G122-202.  I in = P would seem to be an easy choice. 11 P only gain For position loops select only P control (SW6:2). Input a step  disturbance of 50% valve current with the step push button  (SW3). Adjust the P gain for the required stability, while  monitoring the front panel valve test point, or the feedback  signal. The gain range of the proportional amplifier can be  moved by changing the plug-in resistor R17. The value loaded  when shipped is 100k Ohms, which gives a 1 to 20 range.  Selecting 200k Ohms will give 2 to 40. The circuit will function  correctly with the value of R17 between 100k Ohms and  10M Ohms. Note that as P gain is increased, the movement due to the step  push button decreases. 12 P and I gains together If you are inexperienced with integral control the following set-up method is a good starting point.  I in = E: Initially select only I (SW6:4). Press the step push  button (SW3). Increase I gain until one overshoot in the  feedback signal is observed. Next select P (SW6:2) and I (SW6:4) together and increase the  P gain to reduce the overshoot. For the I in = E arrangement the P and I sequence could be  reversed. i.e.: adjust P first, followed by I.  I in = P: For an I in = P arrangement, only the “P followed  by I” sequence of adjustment can be used. For a more thorough discussion see G122-202 Application  Notes (part no C31015). 13 I limit The contribution from the integrator to the output amplifier  can be reduced by selecting I limit on (SW6:3). When this  switch is on the integrator contribution is reduced to  approximately 15% of the level when it is off. This feature is  useful in a position loop that may require integral control to  achieve the required steady state accuracy. The limited integral  control removes valve null error when the final position is  reached. It is also useful in a pressure loop to limit overshoot,  if the valve drive saturates.


  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® MDS 5000 installation method
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Bently Nevada 3500/65 145988-02 Channel Temperature Monitor
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF RMV-111D undervoltage and overvoltage relay
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • ​GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson S Series Traditional I/O Modules
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNS iS MConnect interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0
  • ABB Panel 800 Version 6 PP885 Hardware and Installation
  • Konica Minolta CM-3700A-U Plus spectrophotometer
  • Schneider FBM233 Field Device System Integrator Module
  • MTL 8502-BI-DP Bus Interface Module (BIM)
  • ABB DO880 Ability ™ System 800xA ® hardware selector
  • GE VMIVME-2540 24 channel intelligent counter/controller
  • GE VMIVME-3115-010 32-Channel 12-bit Analog Output Board
  • GE Fanuc Automation VMIVME-4140 32-Channel 12-bit Analog Output Board
  • BENTLY 1900/65A General Purpose Equipment Monitor
  • REXROTH Digital axis control HNC100
  • GE Grid Solutions 369 Series
  • ZYGO ZMI 7702 laser head
  • ZYGO ZMI 501A shell
  • ABB PFEA111-65 Tension Electronic Equipment
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1747-DCM Direct Communication Module
  • Allen Bradley 1746-NI8 SLC 500 Analog Input Module
  • Allen Bradley 1734 series POINT I/O common terminal module and voltage terminal module
  • Allen Bradley 150 Series SMC Dialog Plus Controller
  • Allen Bradley 1494V series
  • AB Allen Bradley 1492 series terminal block
  • Allen Bradley 1485 Series DeviceNet Media System
  • Allen Bradley 1391-DES series digital AC servo drive
  • Allen Bradley 1336 PLUS II Adjustable Frequency Driver
  • Allen Bradley 1336 IMPACT AC Inverter
  • Allen Bradley 1326AB high-performance AC servo motor
  • Allen Bradley DeviceNet Communication Module (1203-GK5/1336-GM5)
  • Allen Bradley 1203-CN1 ControlNet Communication Module
  • Rockwell Automation PanelView Standard Series Terminal (Model 2711)
  • Siemens SIMATIC S7-300 6ES7322-1BH01-0AA0 Digital Output Module
  • Siemens SIMATIC S7-300 Digital Input Module (6ES7321-1BH02-0AA0)
  • Rockwell Automation 836T Series Differential Pressure Controller
  • Schneider Modicon Quantum 140DRA84000 Discrete Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Modicon Quantum 140XBP01000 racks backplanes
  • ABB NTST01 Time Sync Link TU Time Sync Link Terminal Unit
  • Siemens 6ES7954-8LC02-0AA0 SIMATIC Memory Card
  • Siemens 6ES7511-1AK02-0AB0 SIMATIC S7-1500 CPU 1511-1 PN Central Processing Unit
  • Allen Bradley 1769-L32E (CompactLogix L32E) Programmable Automation Controller
  • Allen-Bradley 2711P-RDT7C PanelView ™ Plus 6 700 Industrial Human Computer Interface
  • Siemens 6AV6642-0DA01-1AX1 SIMATIC OP177B Industrial Human Machine Interface (HMI)
  • Emerson PACSystems RX3i I/O Module
  • Moxa EDS-508A series network managed Ethernet switch
  • Moxa EDS-408A series industrial Ethernet switch
  • ABB TK821V020 (3BSC95020R1) battery cable
  • Sonnax 6R80L-6R100-ZIP Transmission Valve Body Repair Kit
  • Moxa EDS-308 series industrial Ethernet switch
  • ABB Symphony Plus S+Control BRC410 Controller
  • GE Qualitrol IC670ALG230 Analog Input Module
  • ABB DCS series thyristor power converter
  • Schneider Electric Foxboro ™ DCS FBM201/b/c/d analog input module
  • Eaton XV-440-10TVB-1-20 Human Machine Interface (HMI)
  • Bentley Baker Hughes 2300 Series Vibration Monitors
  • Allen-Bradley IMC ™ S Class Compact Motion Controllers (IMC-S/23x model)
  • Siemens 6AV7875-0BC20-1AC0 SIMATIC HMI
  • Siemens 6AV6645-0CB01-0AX0 Mobile Panel
  • Siemens 6DD1607-0AA2 module
  • GE IC693MDL655 Discrete Input Module
  • ABB AI820 3BSE008544R1 Analog Input Module
  • Siemens 6EP1336-3BA10 power module
  • ABB AO810 REP3BSE008522R1 Analog Output Module
  • Siemens SIMATIC S7-400 EXM 438-1 I/O Expansion Module (6DD1607-0CA1)
  • Bently Nevada 3300 XL 8mm Proximity Sensor System
  • MOOG Rugged Motion Controller
  • GE Grid Solutions Hydran M2 (Mark III) Transformer Oil Dissolved Gas and Moisture Monitoring Device
  • Fanuc A16B-3200-0110 CNC System Module
  • ABB PM866AK01 processor unit (3BSE076939R1)
  • ABB MControl Motor and Feedline Control Unit (1TGE120011R1000)
  • ABB DSDP 140B Counter Board (5716001-ACX)
  • ABB M10x Motor Control and Protection Unit (1TNA920500R0002)
  • Foxboro Evo ™ Standard 200 Series Baseplates(PSS 31H-2SBASPLT)
  • Foxboro I/A Series Compact 200 16 Slot Horizontal Substrate (31H2C480B4)
  • DeltaV ™ Flex Connect Solutions for Foxboro ™ I/A Series 100 I/O