K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
ABB SPDSM04 Pulse Input Module
❤ Add to collection

ABB SPDSM04 Pulse Input Module

+86-15305925923
Mr.Wang
wang@kongjiangauto.com
SPDSM04 Pulse Input Module
9962.00
¥3244.00
Weight:2.000KG
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description
SPDSM04 Pulse Input Module

ABB SPDSM04 Pulse Input Module

Overview

Product Definition and Function: The ABB SPDSM04 Pulse Input Module is a module designed to receive and process pulse signals. It plays a vital role in industrial automation systems, mainly used to collect pulse signals from various pulse generating devices (such as encoders, flow meters, counters, etc.) and convert these signals into digital quantities, so that the control system can analyse, process and make use of them to measure and monitor parameters such as speed, flow rate, counting and so on.

Working Principle

Signal input and conditioning: The module has several pulse input channels, which can receive different types of pulse signals. When a pulse signal is input to the module, it first passes through a signal conditioning circuit. The main function of this circuit is to filter, amplify and shape the input signal. Filtering is to remove high-frequency noise and interference components from the signal to make the signal purer. Amplification is to enhance the amplitude of some weak pulse signals to a suitable range for subsequent processing. Shaping is to convert irregular pulse signals into regular square wave signals, e.g. to convert pulse signals with burrs or distortions into standard square wave signals with alternating high and low levels for easy counting and measurement.

Pulse counting and measurement: The conditioned pulse signal is fed into a pulse counting circuit. This circuit will count the rising or falling edges of the pulses, depending on the settings of the module. At the same time, the module can also measure the frequency, period, duty cycle and other parameters of the pulse. For example, frequency is calculated by recording the number of pulses per unit time (e.g., 1 second); period is calculated by measuring the time interval between two adjacent rising edges of a pulse; and duty cycle is calculated by counting the ratio of the pulse high level duration to the pulse period. These measurement parameters can be calculated and processed by the microprocessor inside the module.

Data transmission and communication: The processed data related to the pulse signals (e.g. counting results, frequency, period, etc.) are stored in the internal registers of the module. The module then transmits this data to the control system via a communication interface (e.g. industrial Ethernet, Profibus, Modbus, etc.). The control system can make further analyses and decisions based on this data, for example, to control the speed of a motor based on the pulse counts from the motor encoder, or to calculate the flow rate and perform flow control based on the pulse signals from the flow meter.

Performance features

Highly accurate pulse processing: High accuracy in pulse signal acquisition, counting and measurement. Pulse counting accuracy can reach ±1 pulse, frequency measurement accuracy can reach ±0.1% - ±0.5% reading accuracy, and period measurement accuracy can also reach a high level. This high level of accuracy allows it to accurately measure a wide range of pulse signal related parameters, providing reliable data support for the precise control of industrial processes.

Multi-Channel Input Function: Typically has multiple pulse input channels, the number of channels may vary from 2 - 8. This multi-channel design allows simultaneous reception and processing of pulse signals from several different sources, facilitating the monitoring of multiple devices or parameters. For example, in a complex industrial automation system, pulses from multiple motor encoders can be collected simultaneously to monitor the motor's operating status, or pulses from multiple flow meters can be received simultaneously to monitor the flow rate of different pipes.

Wide Pulse Frequency Range: A wide range of pulse frequencies can be processed, generally from a few Hz to tens of kHz or even higher, depending on the module model and configuration. This wide range of adaptability allows it to be used in a variety of different frequency pulse signal processing scenarios, for example, from measuring encoder pulses from low-speed rotating equipment to processing pulses from high-speed electronic equipment.

High signal immunity: Various anti-interference measures are taken during signal input and processing. In addition to the filtering function in the signal conditioning circuitry, the module has been optimised in terms of hardware design and software algorithms to enhance anti-interference capability. For example, in industrial environments where electromagnetic interference (EMI) and radio-frequency interference (RFI) exist, it is able to effectively identify and filter interference signals to ensure accurate pulse signal acquisition and processing.

Technical Parameters

Input parameters

Number of input channels: generally 2 - 8 channels, each channel can receive and process pulse signals independently.

Input signal type and level requirements: A variety of pulse signal types can be received, such as TTL (Transistor Transistor Logic) level signals, CMOS (Complementary Metal Oxide Semiconductor) level signals and so on. For level requirements, the input high level range may be 2V - 5V, and the input low level range may be 0V - 0.8V, which may vary slightly depending on the module model.

Input pulse frequency range: The frequency range is generally from a few Hz to tens of kHz, e.g. the minimum measurable frequency is 1Hz and the maximum measurable frequency is 50kHz.

Measurement parameters

Pulse counting accuracy: Counting accuracy of ±1 pulse ensures accurate counting.

Frequency Measurement Accuracy: Measurement accuracy of ±0.1% - ±0.5% reading accuracy provides highly accurate frequency measurements.

Cycle Measurement Accuracy: Cycle measurement accuracy is also high, depending on the frequency range and module settings, and can generally achieve cycle reading accuracy of ±0.1% - ±0.5%.

Duty Cycle Measurement Range and Accuracy: The duty cycle measurement range is generally 0% - 100%, and the accuracy can reach ±1% - ±5% of the duty cycle reading accuracy.

Communication Parameters

Supported communication protocols: Support a variety of industrial communication protocols, such as industrial Ethernet, Profibus, Modbus, etc., to facilitate integration with different control systems.

Communication rate: The communication rate varies according to different protocols. For example, in industrial Ethernet communication, the communication rate can reach 10Mbps - 1000Mbps; in Profibus communication, the communication rate can reach 12Mbps - 100Mbps; in Modbus communication, the communication rate can vary from 9600bps - 115200bps.

Physical Parameters

Dimensions: The external dimensions are generally designed according to the installation requirements, the length may be between 10cm - 20cm, the width between 5cm - 10cm, the thickness between 3cm - 8cm, easy to be installed in the standard card slot of the control cabinet or the installation position of the equipment.

Weight: Light weight, usually between 100g - 500g, will not cause excessive burden on the overall weight and installation of the equipment.

Environmental parameters

Operating temperature range: can work in a wide range of temperature, generally - 20 ℃ - + 60 ℃, can adapt to different industrial site temperature conditions.

Humidity range: Relative humidity range is usually 10% - 90% (non-condensing), ensuring normal operation in different humidity environments.

Application Areas

Motor control and monitoring: In motor control systems, it is used to receive pulse signals from the motor encoder. By counting and measuring the frequency of the pulse signals, information on the speed and direction of rotation of the motor can be accurately obtained. This is important for speed and position control of motors as well as for fault diagnosis (e.g. motor blocking detection).

Flow measurement and monitoring: In fluid measurement systems, it is used in conjunction with various flowmeters (e.g., turbine flowmeters, vortex flowmeters, etc.). The pulse signal output from the flowmeter is received by the module and can be counted and related calculations can be made to determine the flow size. This plays a key role in flow monitoring and control in chemical, petroleum, water treatment and other industries.

  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® MDS 5000 installation method
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Bently Nevada 3500/65 145988-02 Channel Temperature Monitor
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF RMV-111D undervoltage and overvoltage relay
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • ​GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson S Series Traditional I/O Modules
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNS iS MConnect interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0
  • ABB Panel 800 Version 6 PP885 Hardware and Installation
  • Konica Minolta CM-3700A-U Plus spectrophotometer
  • Schneider FBM233 Field Device System Integrator Module
  • MTL 8502-BI-DP Bus Interface Module (BIM)
  • ABB DO880 Ability ™ System 800xA ® hardware selector
  • GE VMIVME-2540 24 channel intelligent counter/controller
  • GE VMIVME-3115-010 32-Channel 12-bit Analog Output Board
  • GE Fanuc Automation VMIVME-4140 32-Channel 12-bit Analog Output Board
  • BENTLY 1900/65A General Purpose Equipment Monitor
  • REXROTH Digital axis control HNC100
  • GE Grid Solutions 369 Series
  • ZYGO ZMI 7702 laser head
  • ZYGO ZMI 501A shell
  • ABB PFEA111-65 Tension Electronic Equipment
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1747-DCM Direct Communication Module
  • Allen Bradley 1746-NI8 SLC 500 Analog Input Module
  • Allen Bradley 1734 series POINT I/O common terminal module and voltage terminal module
  • Allen Bradley 150 Series SMC Dialog Plus Controller
  • Allen Bradley 1494V series
  • AB Allen Bradley 1492 series terminal block
  • Allen Bradley 1485 Series DeviceNet Media System
  • Allen Bradley 1391-DES series digital AC servo drive
  • Allen Bradley 1336 PLUS II Adjustable Frequency Driver
  • Allen Bradley 1336 IMPACT AC Inverter
  • Allen Bradley 1326AB high-performance AC servo motor
  • Allen Bradley DeviceNet Communication Module (1203-GK5/1336-GM5)
  • Allen Bradley 1203-CN1 ControlNet Communication Module
  • Rockwell Automation PanelView Standard Series Terminal (Model 2711)
  • Siemens SIMATIC S7-300 6ES7322-1BH01-0AA0 Digital Output Module
  • Siemens SIMATIC S7-300 Digital Input Module (6ES7321-1BH02-0AA0)
  • Rockwell Automation 836T Series Differential Pressure Controller
  • Schneider Modicon Quantum 140DRA84000 Discrete Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Modicon Quantum 140XBP01000 racks backplanes
  • ABB NTST01 Time Sync Link TU Time Sync Link Terminal Unit
  • Siemens 6ES7954-8LC02-0AA0 SIMATIC Memory Card
  • Siemens 6ES7511-1AK02-0AB0 SIMATIC S7-1500 CPU 1511-1 PN Central Processing Unit
  • Allen Bradley 1769-L32E (CompactLogix L32E) Programmable Automation Controller
  • Allen-Bradley 2711P-RDT7C PanelView ™ Plus 6 700 Industrial Human Computer Interface
  • Siemens 6AV6642-0DA01-1AX1 SIMATIC OP177B Industrial Human Machine Interface (HMI)
  • Emerson PACSystems RX3i I/O Module
  • Moxa EDS-508A series network managed Ethernet switch
  • Moxa EDS-408A series industrial Ethernet switch
  • ABB TK821V020 (3BSC95020R1) battery cable
  • Sonnax 6R80L-6R100-ZIP Transmission Valve Body Repair Kit
  • Moxa EDS-308 series industrial Ethernet switch
  • ABB Symphony Plus S+Control BRC410 Controller
  • GE Qualitrol IC670ALG230 Analog Input Module
  • ABB DCS series thyristor power converter
  • Schneider Electric Foxboro ™ DCS FBM201/b/c/d analog input module
  • Eaton XV-440-10TVB-1-20 Human Machine Interface (HMI)
  • Bentley Baker Hughes 2300 Series Vibration Monitors
  • Allen-Bradley IMC ™ S Class Compact Motion Controllers (IMC-S/23x model)
  • Siemens 6AV7875-0BC20-1AC0 SIMATIC HMI
  • Siemens 6AV6645-0CB01-0AX0 Mobile Panel
  • Siemens 6DD1607-0AA2 module
  • GE IC693MDL655 Discrete Input Module
  • ABB AI820 3BSE008544R1 Analog Input Module
  • Siemens 6EP1336-3BA10 power module
  • ABB AO810 REP3BSE008522R1 Analog Output Module
  • Siemens SIMATIC S7-400 EXM 438-1 I/O Expansion Module (6DD1607-0CA1)
  • Bently Nevada 3300 XL 8mm Proximity Sensor System
  • MOOG Rugged Motion Controller
  • GE Grid Solutions Hydran M2 (Mark III) Transformer Oil Dissolved Gas and Moisture Monitoring Device
  • Fanuc A16B-3200-0110 CNC System Module
  • ABB PM866AK01 processor unit (3BSE076939R1)
  • ABB MControl Motor and Feedline Control Unit (1TGE120011R1000)
  • ABB DSDP 140B Counter Board (5716001-ACX)
  • ABB M10x Motor Control and Protection Unit (1TNA920500R0002)
  • Foxboro Evo ™ Standard 200 Series Baseplates(PSS 31H-2SBASPLT)
  • Foxboro I/A Series Compact 200 16 Slot Horizontal Substrate (31H2C480B4)
  • DeltaV ™ Flex Connect Solutions for Foxboro ™ I/A Series 100 I/O