K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
ABB SPDSM04 Pulse Input Module
❤ Add to collection

ABB SPDSM04 Pulse Input Module

+86-15305925923
Mr.Wang
wang@kongjiangauto.com
SPDSM04 Pulse Input Module
9962.00
¥3244.00
Weight:2.000KG
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description
SPDSM04 Pulse Input Module

ABB SPDSM04 Pulse Input Module

Overview

Product Definition and Function: The ABB SPDSM04 Pulse Input Module is a module designed to receive and process pulse signals. It plays a vital role in industrial automation systems, mainly used to collect pulse signals from various pulse generating devices (such as encoders, flow meters, counters, etc.) and convert these signals into digital quantities, so that the control system can analyse, process and make use of them to measure and monitor parameters such as speed, flow rate, counting and so on.

Working Principle

Signal input and conditioning: The module has several pulse input channels, which can receive different types of pulse signals. When a pulse signal is input to the module, it first passes through a signal conditioning circuit. The main function of this circuit is to filter, amplify and shape the input signal. Filtering is to remove high-frequency noise and interference components from the signal to make the signal purer. Amplification is to enhance the amplitude of some weak pulse signals to a suitable range for subsequent processing. Shaping is to convert irregular pulse signals into regular square wave signals, e.g. to convert pulse signals with burrs or distortions into standard square wave signals with alternating high and low levels for easy counting and measurement.

Pulse counting and measurement: The conditioned pulse signal is fed into a pulse counting circuit. This circuit will count the rising or falling edges of the pulses, depending on the settings of the module. At the same time, the module can also measure the frequency, period, duty cycle and other parameters of the pulse. For example, frequency is calculated by recording the number of pulses per unit time (e.g., 1 second); period is calculated by measuring the time interval between two adjacent rising edges of a pulse; and duty cycle is calculated by counting the ratio of the pulse high level duration to the pulse period. These measurement parameters can be calculated and processed by the microprocessor inside the module.

Data transmission and communication: The processed data related to the pulse signals (e.g. counting results, frequency, period, etc.) are stored in the internal registers of the module. The module then transmits this data to the control system via a communication interface (e.g. industrial Ethernet, Profibus, Modbus, etc.). The control system can make further analyses and decisions based on this data, for example, to control the speed of a motor based on the pulse counts from the motor encoder, or to calculate the flow rate and perform flow control based on the pulse signals from the flow meter.

Performance features

Highly accurate pulse processing: High accuracy in pulse signal acquisition, counting and measurement. Pulse counting accuracy can reach ±1 pulse, frequency measurement accuracy can reach ±0.1% - ±0.5% reading accuracy, and period measurement accuracy can also reach a high level. This high level of accuracy allows it to accurately measure a wide range of pulse signal related parameters, providing reliable data support for the precise control of industrial processes.

Multi-Channel Input Function: Typically has multiple pulse input channels, the number of channels may vary from 2 - 8. This multi-channel design allows simultaneous reception and processing of pulse signals from several different sources, facilitating the monitoring of multiple devices or parameters. For example, in a complex industrial automation system, pulses from multiple motor encoders can be collected simultaneously to monitor the motor's operating status, or pulses from multiple flow meters can be received simultaneously to monitor the flow rate of different pipes.

Wide Pulse Frequency Range: A wide range of pulse frequencies can be processed, generally from a few Hz to tens of kHz or even higher, depending on the module model and configuration. This wide range of adaptability allows it to be used in a variety of different frequency pulse signal processing scenarios, for example, from measuring encoder pulses from low-speed rotating equipment to processing pulses from high-speed electronic equipment.

High signal immunity: Various anti-interference measures are taken during signal input and processing. In addition to the filtering function in the signal conditioning circuitry, the module has been optimised in terms of hardware design and software algorithms to enhance anti-interference capability. For example, in industrial environments where electromagnetic interference (EMI) and radio-frequency interference (RFI) exist, it is able to effectively identify and filter interference signals to ensure accurate pulse signal acquisition and processing.

Technical Parameters

Input parameters

Number of input channels: generally 2 - 8 channels, each channel can receive and process pulse signals independently.

Input signal type and level requirements: A variety of pulse signal types can be received, such as TTL (Transistor Transistor Logic) level signals, CMOS (Complementary Metal Oxide Semiconductor) level signals and so on. For level requirements, the input high level range may be 2V - 5V, and the input low level range may be 0V - 0.8V, which may vary slightly depending on the module model.

Input pulse frequency range: The frequency range is generally from a few Hz to tens of kHz, e.g. the minimum measurable frequency is 1Hz and the maximum measurable frequency is 50kHz.

Measurement parameters

Pulse counting accuracy: Counting accuracy of ±1 pulse ensures accurate counting.

Frequency Measurement Accuracy: Measurement accuracy of ±0.1% - ±0.5% reading accuracy provides highly accurate frequency measurements.

Cycle Measurement Accuracy: Cycle measurement accuracy is also high, depending on the frequency range and module settings, and can generally achieve cycle reading accuracy of ±0.1% - ±0.5%.

Duty Cycle Measurement Range and Accuracy: The duty cycle measurement range is generally 0% - 100%, and the accuracy can reach ±1% - ±5% of the duty cycle reading accuracy.

Communication Parameters

Supported communication protocols: Support a variety of industrial communication protocols, such as industrial Ethernet, Profibus, Modbus, etc., to facilitate integration with different control systems.

Communication rate: The communication rate varies according to different protocols. For example, in industrial Ethernet communication, the communication rate can reach 10Mbps - 1000Mbps; in Profibus communication, the communication rate can reach 12Mbps - 100Mbps; in Modbus communication, the communication rate can vary from 9600bps - 115200bps.

Physical Parameters

Dimensions: The external dimensions are generally designed according to the installation requirements, the length may be between 10cm - 20cm, the width between 5cm - 10cm, the thickness between 3cm - 8cm, easy to be installed in the standard card slot of the control cabinet or the installation position of the equipment.

Weight: Light weight, usually between 100g - 500g, will not cause excessive burden on the overall weight and installation of the equipment.

Environmental parameters

Operating temperature range: can work in a wide range of temperature, generally - 20 ℃ - + 60 ℃, can adapt to different industrial site temperature conditions.

Humidity range: Relative humidity range is usually 10% - 90% (non-condensing), ensuring normal operation in different humidity environments.

Application Areas

Motor control and monitoring: In motor control systems, it is used to receive pulse signals from the motor encoder. By counting and measuring the frequency of the pulse signals, information on the speed and direction of rotation of the motor can be accurately obtained. This is important for speed and position control of motors as well as for fault diagnosis (e.g. motor blocking detection).

Flow measurement and monitoring: In fluid measurement systems, it is used in conjunction with various flowmeters (e.g., turbine flowmeters, vortex flowmeters, etc.). The pulse signal output from the flowmeter is received by the module and can be counted and related calculations can be made to determine the flow size. This plays a key role in flow monitoring and control in chemical, petroleum, water treatment and other industries.

  • ABB 3BHT300009R1 DO620 Digital Output 32ch, 60VDC
  • ABB 3BHT300006R1 DO610 Digital Output 32ch 24VDC
  • ABB 0338434M-REF Refurbished DLM 02, Link module, as of V3
  • ABB DLM01 EXCITATION REDUNDANCY CONTROL SYSTEM
  • ALSTOM V4561484-0100 PCB circuit boards
  • ABB NE870 Network Router 3BSE080239R1
  • ABB DI610 – 32-Channel Digital Input Module for Industrial Automation
  • ABB DDO02 Industrial Digital Output Module
  • ABB 0369627MR DDO01 - DIGITAL OUTPUT
  • ABB DDI03 Module
  • ABB 0369626M-EXC Exchange of DDI 01, Digital input as of V 3
  • ABB Y0338701M DCP10 - CPU MODULE 8 MB
  • ABB DCP02 CPU MODULE
  • ABB 0369629M-REF Refurbished DAO 01, Analog output, as of V3
  • ABB DAI03 Digital Input Module
  • ABB D-20-0-1102 control module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB BRC-300 Bridge Controller and Process Bus Adapter
  • ABB CI520V1 AF100 Communication Interface
  • ABB 3BHT300003R1 CI610 IOB_A Bus Extender for Basic Unit
  • ABB CI615 Controller Module
  • ABB EXC3BSE012868R1 CI626V1 AF100 Communication Interface
  • ABB CI627 Advanced Industrial Control Module
  • ABB 3BSE020520R1 CI810B AF 100 Fieldbus Comm. Interface
  • ABB CP450 Installation and Operation Manual
  • ABB CR-M4LS Logical socket for 2c/o or 4c/o CR-M relay
  • ABB 3HAC14550-2/09A Single servo drive unit
  • ABB 3HAC17326-1/02 Motor M26 Type B
  • ABB 3HNA001572-001 MCCB-02
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNE00313-1 (with 10 m cable and plug)
  • ABB 61615-0-1200000 Panel Controller
  • ABB AI610 – 32 Channel 12-bit Analog Input Module
  • ABB AI625 Analog Input 16ch, 12 Bit, 4-20 mA
  • ABB AI835A System 800xA hardware selector
  • ABB 3BHT300008R1 AO610 Analog Output 16ch, 12bit
  • ABB 3HAB8101-8/08Y Servo Drive Module
  • ABB 3HAC025466-001 Advanced Control Module for Industrial Automation
  • Rolls-Royce Marine AS 5880-PC1002 REV-A DEP. Steering - TENFJORD PCB Card
  • Rolls-Royce 5880-pc1002 Version A Dep Steering Gear-Tenfjord PCB Card 99046
  • Rolls-Royce Marine Lauer LCA 325. P2 PROFIBUS-DP Network Display Panel UN924
  • Rolls-Royce Marine UN924 Digital Display Controller
  • Rolls-Royce UN930 Digital Display Controller 24V
  • Rolls-Royce UN31 ECR Panel 000127603
  • Rolls-Royce Marine AS UN991.1 Distribution Plate
  • Rolls-Royce Propulsion Control Boards
  • Rolls-Royce SLIO 02 Canman controller network
  • Rolls-Royce Electronics 1071 Automatic Display Type No. 07918 B UN 921 ECR 24VDC
  • Rolls-Royce PCC1030C ULSTEIN Panel Controller Card
  • Rolls-Royce KAMEWA Propeller Control Room Panel Basic R160637A
  • Rolls-Royce Ulstein-UMAS V Marine Automation UN925 Panel Controller Roller for Parts
  • Rolls-Royce Marine AS UN921 Operator Panel
  • Rolls-Royce Marine r10I53s / R10I53S Panel Computer 98H0101A0000I Version 1.9
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB 3ASC25H204 DAPU100 high-performance processor module
  • ABB 3ASC25H203 Module
  • ABB 35AE92 – High Performance Industrial Control Module
  • ABB 200900-004 I/O Adaptor PLC Board
  • AB 1794-IE8 FLEX I/O Analog Modules
  • AB 1794-IF8IH FLEX I/O Isolated Input HART Analog Module
  • AB 1794-IE8H FLEX I/O 8 Input HART Analog Module
  • AB 1794-L34 FlexLogix Controller System User Manual
  • AB 1794-OB8 FLEX I/O Digital DC Output Modules
  • AB Enhanced PLC-5 Programmable Controllers
  • AB 1785-BCM and 1785-BEM Modules for PLC-5 Programmable Controllers
  • AB Cat. No. 1785-CHBM ControlNet PLC-5 Hot Backup System
  • AB 1785-ENET PLC-5 Ethernet Interface Module
  • AB 1785-L20C15 ControlNet PLC-5 Programmable Controllers
  • AB 1785-L40E Ethernet PLC-5 Programmable Controllers
  • AB 1785-PFB PLC-5 PROFIBUS Local Station Manager
  • AB 1785 PLC-5 Programmable Controller System
  • AB 1785 um019 PLC-5 Ethernet Interface Module
  • AB 1786 - RPA/B ControlNet Modular Repeater Adapter
  • AB PLC-5 1771 to ControlLogix 1756 I/O Wiring Conversion Systems
  • AB Analog Input Module Cat. No. 1771-IFE
  • AB 1771-IFE A/B/C Analog Input Module
  • AB Cat. No.1771-IVN DC (10-30V) Input Module
  • AB 1771-OFE Series B Analogue Output Modules
  • AB Cat. No.1771-QB Linear Positioning Module
  • AB 1771-VHSC Very High-speed Counter Module
  • AB 1771 Digital I/O AC Input and Output Modules
  • AB 1783 Series Ethernet Taps
  • AB Stratix 8000 and 8300 Ethernet Managed Switches
  • AB MicroLogix 1400 Programmable Controllers
  • AB1642 Module Manual MicroLogix 1500 & CompactLogix Resolver Interface Module
  • AB 1769-L24ER-QB1B CompactLogix 5370 L2 Controllers
  • AB 1769 Compact I/O Modules Specifications
  • AB 1769 Controller CompactLogix System
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controller
  • AB 1763-L16AWA MicroLogix 1100 Programmable Controllers
  • AB 1762-L24AWA MicroLogix 1200 Programmable Controllers
  • AB 1762-IQ8OW6 DC-Input/Relay-Output Combination Module
  • AB 1757-SRM ProcessLogix and ControlLogix System Redundancy Module
  • GE ALSTOM:SPU.232.2.029.366.817
  • AB ProcessLogix R500.1 Process Control System
  • AB 1761 - NET - Ethernet Interface for ENI MicroLogix
  • AB 1761-L20BWB-5A MicroLogix 1000 Series
  • AB 1761 MicroLogix 1000 Programmable Controller
  • AB 1756-DHRIO, 1756-DHRIOXT ControlLogix Data Highway Plus-Remote I/O Communication Interface Module
  • AB 1756-D IO ControlLogix I/O Modules Specifications
  • AB 1756-cpu ControlLogix Systems
  • AB 1756 ControlLogix Analog I/O Modules
  • AB 1756 ControlLogix System
  • AB 1756 IB32 ControlLogix 32-point DC (10…31.2V) Input Module Series B
  • AB 1756-IR6I ControlLogix Analog I/O Modules
  • AB 1756-DNB ControlLogix DeviceNet Scanner Module
  • AB 1756-CN2RXT ControlLogix-XT ControlNet Interface Module
  • AB 1756-CN2 1756-CN2R ControlLogix ControlNet Interface Module
  • AB 1747 - AENTR SLC 500 EtherNet/IP Adapter
  • AB 1746, 1747SLC500 Control System Selection Guide
  • AB 1746-C7, 1746-C9, 1746-C16 SLC 500™ Programmable Controller Rack Interconnect Cables
  • AB 1746-BTM Drum Temperature Control Module
  • AB 1746-BAS and 1746-BAS-T SLC 500 BASIC and BASIC-T Modules
  • AB 1746-A4, -A7, -A10 SLC 500™ Modular Chassis
  • AB SLC 500™ Modular Chassis 1746-A4, -A7, -A10 and -A13 Series B
  • AB 1734-AENT POINT I/O EtherNet/IP Adapter
  • AB Allen-Bradley's 1734 POINT I/O Series Products
  • A-B 1715 Redundant I/O System Specifications
  • AB 56AMXN/B ControlLogix AutoMax DCSNet and AutoMax Remote I/O Communication Interface Module
  • AB Bulletin 1203 Serial Communications Module
  • AB 1326AB High Performance AC Servomotors
  • AB 1326AB 460V, Torque Plus Series, AC Servo Motors
  • AB 1336 PLUS II Engineering Drives
  • AB CENTERLINE® 2100/2400 Series Motor Control Centres
  • AB 1394 Digital AC Multi-Axis Motion Control System
  • AB 1398 ULTRA 100 Series Drives
  • AB 1402 Series Line Synchronisation Modules
  • AB 1407-CGCM Combined Generator Control Module