K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
GE RS-FS-9001 FLAME TRACKER
❤ Add to collection

GE RS-FS-9001 FLAME TRACKER

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

1.1.2 INTERCONNECTING CABLE RS-E2-0285PXXX OR 362A1053PXXX

Mechanical

Wire 18 gauge (1.02 mm), 19 strand nickel plated copper

Insulation Teflon PTFE

Shield

Jacket

36 gauge (0.127 mm) nickel plated copper braid

Extruded PFA

Armor Stainless steel braid

Connector MIL-C-38999 series III, shell size 15, 5 #16 pins (only 3

pins are used)

Operating

Voltage (max) 300 vrms

Temperature (max) 482F (250C)

48848.00
¥46000.00
Weight:8.800KG
Quantity:
(Inventory: 50)
Consultation
Accessories
  • ABB-07KR51-Centr
    Original :¥11222.00
    With a price :¥11222
    Quantity  
  • ABB-3BSE020269R0
    Original :¥16364.00
    With a price :¥16364
    Quantity  
  •   
    Original :¥
    0.00
      
      With the total price :¥
    0.00
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

1.1.2 INTERCONNECTING CABLE RS-E2-0285PXXX OR 362A1053PXXX

Mechanical

Wire 18 gauge (1.02 mm), 19 strand nickel plated copper

Insulation Teflon PTFE

Shield

Jacket

36 gauge (0.127 mm) nickel plated copper braid

Extruded PFA

Armor Stainless steel braid

Connector MIL-C-38999 series III, shell size 15, 5 #16 pins (only 3

pins are used)

Operating

Voltage (max) 300 vrms

Temperature (max) 482F (250C)




GE RS-FS-9001 FLAME TRACKER

3 INSTALLATION
3.1 MECHANICAL
The maximum operating temperature for the flame sensor is 302 F (150 C). If the peak ambient
temperature at the location of the sensor exceeds this then cooling will be required. There are three methods
available for cooling: Water-cooling, air-cooling with ambient air, and air-cooling with pressurized air.
Water cooling requires the use of a water cooling coil Part Number sp-566, GE Part Number
353B3490G001. The water-cooling coil requires water at a temperature of 50 F to 135 F (10 C to 57 C) at
a flow rate of 1.0 gpm (3.8 lpm) per sensor. When using water-cooling the flame sensor can be operated to
an ambient temperature of (455F) 235C.
Air-cooling with ambient air can be used in installations where the enclosure is cooled with forced air. This
would be typical of LM2500 and LM6000 aircraft engine applications. The air velocity at the sensor must be 5
ft/sec (1.5 m/sec), or greater, at a temperature of 50 F (10 C), or less, above outside ambient. Under these
conditions the sensors will operate at outside ambient temperatures up to 140 F (60 C).
Air-cooling with pressurized air requires the use of Air-Cooling Can. GE Reuter-Stokes Part Number RS-E2-
0259 (GE Part Number 07482SOCNL44821P01). The Air-Cooing Can is installed in the same manner as the
water-cooling coil. The Air-Cooling Can requires 25-psi (170 kPa) minimum at 120 F (49 C) maximum.
Do not complete step 2 in the “FLAME SENSOR AND WATER COOLING JACKET INSTALLATION
INSTRUCTIONS” on the next page. Leave the sensors installed hand tight until after the sensor checkout

described in Section 3.3.

1. Apply a small amount of Never-Seez PN NG-165(GE PN 248A9779P001) to threads, prior
to reinstalling the Flame Sensor
2.Inspect the window and clean with Isopropanol soaked swab. If required install hand tight
(3-4 Full turs) tighten with a wrench approximately 2.5 turns.Tighten further as required to
align keys on cable connector with slots in sensor connector
3. Slide cooling coil over Flame Sensor major diameter and orient tubes on the coil as required
for assembly. Tighten clamps 50-60 in. lbs.Install Swagelok fittings re-torque damps to 50-
60 in. lbs. after first shut down
Note:50-60 in.lbs=5.6 - 6.8 Nm.When installing the Water Cooling Coil,ensure that the edge of the
Sheet Metal Band is not in contact with the cooling tubes. This will ensure that no rubbing or fretting of the
cooling tubes by the band's edge will occur during turbine operation.
The Flame Tracker™ is connected to the controller as a typical two wire current transmitter. It can be
operated from any well-filtered dc supply from 12 volts to 30 volts. The supply should be capable of supplying
100 milliamps.
The power supply must be protected to prevent the supply voltage from exceeding 30 volts in normal use
and more than 42 volts under transient conditions. The sensor is protected against reverse polarity. The
maximum value for the sense resistor plus the wire resistance is dependent on the supply voltage. At 24 volts
this value is 560 ohms. Resistance values for other voltages can be determined from the chart in Figure 2.
Figure 1 shows the preferred wiring for the sensor with the Rsense of the controller in the return line of the
sensor. This configuration can be used with controllers that have single ended inputs (one side of the input
grounded) or differential inputs (neither side of the input grounded). For pin outs and cable color code see
Figure 1.
3.3 CONNECTOR PINOUT
The pinout for the power connector is as follows:
CONNECTOR LEGEND
PIN CIRCUIT DESIGNATIONA -B +
C Ground
D Not Used
E Not Used
3.4 SENSOR CHECKOUT
Disconnect the sensors and unscrew them from the turbine. Plug the sensor cables back in to each of the
sensors. Apply power to the sensors. Check the current values at the controller for each of the sensors. The
sensors are sensitive to light, and may have some reading, depending on the ambient light level. Test each
sensor by covering the port to see the zero flame intensity signals, and with a flashlight to see a positive
reading. With no light the reading should be 3.7 to 4.1 milliamps, while with most flashlights the reading should
be above 8 milliamps. An LED flashlight may not work for this application. Variations in flashlight type,
strength, or battery voltage may cause variation in signal output. The flashlight test is intended as a field test
for general functionality only and is not a controlled or quantitative test. If a sensor is outside these rough
check limits see Section 5.0.
Disconnect the sensor cables, and reinstall the sensors according to the instruction in Section 3.1. At this
time step 2 of Section 3.1 should be completed and the sensor cables reconnected. Make sure that the
sapphire window is clean; if it needs cleaning, do this according to the maintenance instructions in Section 4.0.
Check that all sensors are reading between 3.7 to 4.1 milliamps.
3.5 CONTROLLER SETUP
The Flame Sensor provides a minimum output of 5 milliamps when exposed to the minimum flame intensity
specified in GE specification number 362A1052. The set point for flame off should be set to 6.25%, which
equals 5 milliamps. The set point for flame on should be 10%, which equals 5.6 milliamps. If the intensity
levels are to low for these settings their may be other
  • HIMA X-CPU 01 processor module
  • Westinghouse iGen5000 Digital Inverter Generator
  • Westinghouse WGen7500DF Dual Fuel Portable Generator
  • Westinghouse WPX2700H/WPX3100H High Pressure Cleaning Machine
  • Westinghouse WH7500V portable generator
  • Westinghouse WGen9500c portable generator
  • Westinghouse DS/DSL series low-voltage power circuit breakers
  • Westinghouse ePX3500 Electric High Voltage Cleaning Machine
  • Westinghouse ST Switch Intelligent Automatic Portable Transfer Switch
  • Westinghouse 2400i digital inverter generator
  • Westinghouse iGen series digital inverter generator
  • HIMA CPU 01 Controller Module
  • Westinghouse WPX3000e/WPX3400e electric high-pressure cleaning machine
  • Westinghouse WGen2000, WGen3600, and WGen3600V portable generators
  • Westinghouse WGen5500 Generator
  • Westinghouse WGen20000 Generator
  • Westinghouse WPro8500 and WPro12000 portable generators
  • Westinghouse iGen4500DFc Dual Fuel Digital Variable Frequency Generator
  • Watlow Series L Temperature Limiting Controller
  • Watlow Series F4P Series 1/4 DIN (96 × 96mm) Temperature/Process Controller
  • Watlow EZ-ZONE ® RME (Expansion) Module
  • Watlow EZ-ZONE ® RMA (Access) module
  • Watlow PM PLUS ™ 6 Series PID Integrated Controller
  • Watlow Immersion Heater
  • Watlow F4T Controller Installation and Failure
  • Watlow DIN-A-MITE ® Style C Solid State Power Controller
  • Watlow plug-in heater
  • Watlow Series 942 Controller
  • Watlow Series 988 Controller
  • Watlow Series 146 Temperature Regulator
  • Watlow PM LEGACY ™ Limit controller
  • Johnson AE55/NIE55 Installation Guide
  • Watlow Series 96 Temperature Controller
  • Watlow PM PLUS ™ PID/Integrated Limit Controller
  • Watlow Ceramic Fiber Heater
  • Watlow Power Series microprocessor based SCR power controller
  • Watlow thermocouple products
  • Watlow Series 965 Controller
  • Watlow PM3 LEGACY ™ PID controller
  • Watlow Series 93 Controller
  • Watlow EZ-ZONE ® PM PID controller
  • Watlow CLS200 series controller
  • YAMAHA RCX40 4-axis robot controller
  • YASKAWA Z1000 series HVAC dedicated frequency converter
  • YASKAWA HV600&Z1000U series HVAC dedicated frequency converter
  • YASKAWA Power Regenerative Unit R1000 Series
  • YASKAWA AC Drive P1000 Industrial Fan and Pump Special Frequency Converter
  • YASKAWA FP605 series industrial fan pump dedicated driver
  • YASKAWA GA500 series AC micro driver
  • YASKAWA AC Drive G7 Series (Model CIMR-G7U)
  • YASKAWA U1000 series 24V power supply options (PS-U10L/PS-U10H)
  • YASKAWA GA800 industrial AC frequency converter Key issues
  • YASKAWA GA800 Industrial AC Inverter
  • YASKAWA AC Drive V1000 Compact Vector Control Drive
  • YASKAWA Control Pack CP-317M System Controller
  • YASKAWA VARISPEED-626M/656MR5 series vector control frequency converter
  • YASKAWA AC Servo Drive HR Series (CACR-HR) Multi functional/Positioning Control
  • YASKAWA MP2000 series machine controller communication module
  • Yokogawa AQ1100 series OLTS multi field tester
  • YOKOGAWA AQ7280 Optical Time Domain Reflectometer
  • YOKOGAWA AQ2200 Series Multi Application Testing System
  • YOKOGAWA AQ6150B/AQ6151B Optical Wavelength Meter
  • YOKOGAWA AQ6360 Optical Spectrum Analyzer
  • Yokogawa AQ6375E Spectral Analyzer Remote Control
  • Yokogawa DL350 Scope Order Communication Interface
  • Yokogawa 701944/701945 100:1 High Voltage Probe
  • Yokogawa CA700 pressure calibrator
  • Yokogawa DLM5000HD series high-definition oscilloscope
  • Yokogawa AQ1210 Series OTDR Multi Field Tester
  • Yokogawa AQ1000 OTDR Optical Time Domain Reflectometer
  • YOKOGAWA WT1801R series precision power analyzer communication interface
  • YOKOGAWA DLM3034HD/DLM3054HD High Definition Oscilloscope
  • YOKOGAWA AQ23011A/AQ23012A Modular Framework Equipment
  • YOKOGAWA DLM3054HD Mixed Signal Oscilloscope
  • YOKOGAWA CW500 Power Quality Analyzer
  • YOKOGAWA CA500/CA550 Multi functional Process Calibration Instrument
  • YOKOGAWA AQ7420 High-Resolution Reflectometer
  • YOKOGAWA FG410/FG420 arbitrary waveform editor
  • Yokogawa Model 701905 Conversion Cable
  • YOKOGAWA MY600 Digital Insulation Resistance Tester
  • YOKOGAWA AQ7290 Series Optical Time Domain Reflectometer OTDR
  • YOKOGAWA LS3300 AC Power Calibrator
  • Yokogawa AQ6377E Optical Spectrum Analyzer Remote Control
  • Yokogawa AQ6361 Optical Spectrum Analyzer
  • Yokogawa IS8000 Integrated Software ECU Monitoring and Synchronization Function
  • Yokogawa ROTAMASS TI Coriolis Mass Flow Meter
  • Yokogawa ROTOMETER RAMC Metal Variable Area Flow Meter
  • Yokogawa SL1000 high-speed data acquisition unit input module
  • ​Yokogawa FLXA402T turbidity and chlorine liquid analyzer Installation and wiring
  • Yokogawa WTB10-DO Series Dissolved Oxygen Measurement System Terminal Box
  • Yokogawa Model 702928 PBD0200 Differential Probe
  • YOKOGAWA ADMAG TI Series AXW Electromagnetic Flow Meter (25-450mm) Installation and Operation
  • YOKOGAWA ADMAG TI series AXW electromagnetic flowmeter (25-1800mm)
  • YOKOGAWA DO30G Dissolved Oxygen Sensor
  • YOKOGAWA SC4AJ Conductivity Sensor
  • YOKOGAWA SC210G Conductivity Detector
  • Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)
  • Yokogawa OR8EFG KCl filled ORP sensor (IM12C07J01-01E)
  • YOKOGAWA FU24 pH/ORP Composite Sensor with Pressure Compensation (IM 12B06J03-03EN-P)
  • Yokogawa SC200 Intelligent Two Wire Conductivity Transmitter System (IM12D08B01-01E)
  • YOKOGAWA CENTUM VP Integrated Production Control System (TI33J01A10-01EN)
  • ABB AO2000-LS25 Laser Analysts User Manual
  • YOKOGAWA FA-M3 positioning module (with analog voltage output)
  • YOKOGAWA FA-M3 Series Basic Modules
  • YOKOGAWA EJA110E Diff erential Pressure Transmitter
  • Zygo 3D Optical Profiler
  • Zygo Mark II 4-inch interferometer system
  • Zygo NewView 9000 3D Optical Contour Analyzer Core Features
  • Zygo NewView 9000 3D Optical Profilometer Technology
  • Zygo Profilometer Standard Operating Procedure
  • Zygo’s Guide to Typical Interferometer Setups
  • ZYGO Laser Interferometer Accessory Guide OMP-0463AM
  • ZYGO MetroPro 9.0 Reference Guide (OMP-0347M)
  • Zygo Device Standard Operating Procedure (SOP)
  • Zygo Verify Laser Interferometer
  • Zygo MicroLUPI interferometer
  • ZYGO ZMI-1000 Displacement Measuring Interferometer System
  • Zygo's ZMI 2000 displacement measurement interferometer system
  • ABB IGCT Technology: A Revolutionary Breakthrough in High Voltage Inverters
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® MDS 5000 installation method