K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
ABB PGC5000 Process gas chromatograph
❤ Add to collection

ABB PGC5000 Process gas chromatograph

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

The PGC5000 Generation 2 Process Gas Chromatograph (analyzer) separates and measures the individual components of gas or  liquid samples. It automatically samples and analyzes process streams, using an appropriate interface to control analytical  functions. This interface may be a Local User Interface (LUI) that utilizes operational software located on the Master Controller,  or it may be a Remote User Interface (RUI) that has the same operational software on a PC. When the text uses the term “user  interface,” it refers to either the LUI or RUI, whichever applies to the particular system.

12125.00
¥10005.00
Weight:2.200KG
Quantity:
(Inventory: 50)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

The PGC5000 Generation 2 Process Gas Chromatograph (analyzer) separates and measures the individual components of gas or  liquid samples. It automatically samples and analyzes process streams, using an appropriate interface to control analytical  functions. This interface may be a Local User Interface (LUI) that utilizes operational software located on the Master Controller,  or it may be a Remote User Interface (RUI) that has the same operational software on a PC. When the text uses the term “user  interface,” it refers to either the LUI or RUI, whichever applies to the particular system.


ABB PGC5000 Process gas chromatograph

The PGC5000 Generation 2 analyzer is compatible with version 4.2.1. and greater, of the STAR Data Management System.

Each analyzer has a temperature code (T-Rating) listed on the nameplate. This T-Rating indicates the temperature classification

of the area in which the analyzer has been designed to operate. T-Ratings and area classifications for analyzer locations are

determined and supplied by the customer.

The standard analyzer consists of a Master Controller and associated ovens. This configuration has the Master Controller

connected to the ovens through an Ethernet switch (see Figure 3.1).

Ovens with Integrated Controllers consist of only the associated ovens. For this configuration there is no Master Controller, and

the user interface is accessed remotely (see Figure 3.2).

Fig. 3.2. Oven with Integrated Controller Connections

An Important Documents CD-ROM comes with the analyzer. Included on this CD are data sheets, installation drawings, and

replacement parts lists needed to support installation and operation of the analyzer. This manual refers to these data sheets

and drawings as the “Data Package.”

3.2 Drawings

Since analyzer configuration depends on the particular application, this manual does not contain generic engineering drawings

and diagrams. You should utilize the drawings, diagrams and replacement parts lists provided on the Data Package supplied

with your analyzer to ensure you are using the correct ones for your system.

3.3 Master controller

The Master Controller can support up to four ovens, in any combination of Class B and Class C ovens, depending on detector

configurations. If internal I/O modules are utilized, the maximum number of ovens per Master Controller is limited to three.

The Master Controller contains a Mounting Plate with a Single Board Computer (SBC) PCB, a Power Supply, one or more SBC

CAN Interface Cards, and optional Wago input/output modules. The front panel assembly has a touchscreen, liquid crystal

display (LCD), keypad, and front panel board.

No Master Controller is required for the Oven with Integrated Controller. The Oven with Integrated Controller can support up

to four ovens, in any combination of Class B and Class C Ovens, depending on detector configurations. The user interface is

accessed remotely, as described in Section 5.7.

The PGC5000 Generation 2 Master Controller can also act as a stand-alone RUI. In this configuration, the Master Controller will

not be connected to an oven, and it will not contain SBC CAN Interface Cards or Wago input/output modules. It will be

connected to the analyzer network via Ethernet and can connect to any PGC5000 Generation 2 device that is supported.

3.4 Class B oven

The Class B Oven, which comes in liquid and vapor versions, houses an isothermal oven which contains the anal

Carrier transports the vaporized sample into the column.

• The column then separates the components and passes them into the detector.

• The detector measures the sample across the range of high to low concentration.

The liquid sample valve is externally mounted on the right side of the Oven Compartment and extends through the isothermal

oven, allowing direct injection. It is actuated by a solenoid valve located in the Oven Electronics Compartment. The liquid

sample valve captures a specific volume of liquid sample below its bubble point, injects it into a temperature controlled

(vaporizing) chamber of the LSV, which then sends the vaporized sample into the oven.

3.4.2 Vapor version

The vapor version has a vapor input to the analysis, so it does not require a liquid sample valve. The duration of an analysis

cycle depends on the applications and consists of the following:

• Carrier gas transports the vaporized sample through the columns.

• The column then separates the components and passes them into the detector.

• The detector measures the sample across the range of high to low concentration.

3.5 Class C oven

The Class C Oven contains the same components as the Class B Oven, but it has the capability to handle more oven

components. The Class C Oven has a maximum of two detectors and a maximum of six valves.

3.6 Oven with integrated controller

The Oven with Integrated Controller can be either a Class B Oven or a Class C Oven. The distinguishing feature is that an Oven

with Integrated Controller has the Single Board Computer (SBC) PCB installed in the oven’s electronics compartment.

Since the Integrated Controller does not have a LUI, certain errors can occur that may not be visible through a RUI. The errors

may include, but not limited to: Configuration Errors, IP Address Conflicts, Name Conflicts, and Host Mismatch errors. If you

believe one of these errors has occurred or you cannot attach a RUI, place a blank USB drive into the USB slot on the SBC and

reboot the analyzer. The anal

Maintenance

4.1 Equipment and supplies required

Factory Data Sheets from the Data Package

Flow measuring device

4.2 Preventive maintenance

The oven design is specifically designed to eliminate the need for extensive and complex maintenance. Where preventive

maintenance procedures require particular time frames or intervals, maintain an inspection log and inspection data. Figure 4.1

lists inspection routines, with recommended time intervals for each routine. In addition, verify analyzer using a validation

sample periodically to ensure operating efficiency.

To aid in preventive maintenance, keep reference chromatograms for comparison and assisting with early

detection of issues as described in the Diagnostics and Troubleshooting section.

INTERVAL

Daily/Weekly

Weekly/Monthly

Monthly/Quarterly

ROUTINE

Perform a visual inspection of the analyzer and sample system.

Check:

• Instrument air supply

• Sample system flows and pressures

• Cylinder gas pressures; replace as necessary

Verify calibration and calibrate as necessary.

Compare resultant chromatograms with those in Data Package.

Check/set analytical flows and pressure as necessary per factory data

package.

Backup SBC tables after calibration and/or any changes to system

operational parameters.

Check carrier line dryers; change as necessary to prevent pressure drop.

Check all filters; clean or replace as necessary.

Inspect analytical valves for wear and proper operation; replace as

necessary.

Check physical condition of analyzer for corrosion, rust, etc.; take

corrective action as necessary.

Fig. 4.1. Maintenance Schedule

4.2.1 Gas cylinder replacement

When you use two cylinders to supply a gas, connect the cylinders in an automatic switchover configuration to ensure

continuous flow to the analyzer when replacing an exhausted cylinder. In this configuration, the second cylinder switches in

automatically when the first cylinder is exhausted (100 psig or less). When your inspection indicates an exhausted cylinder,

replac

When you use a single cylinder to supply a gas, check the cylinder regularly and replace it when the pressure falls below 100

psig, using another cylinder containing the specified gas.

4.2.2 Cleaning

Prior to cleaning the analyzer, turn off the power to the unit. Avoid using chemical agents which might

damage the component parts of the analyzer.

Clean the analyzer as often as environmental conditions require. Accumulation of dirt in certain oven subassemblies can cause

overheating and component failure, because dirt on components acts as insulating material preventing efficient heat

dissipation.

Remove loose dirt accumulated on the outside of the analyzer with a soft cloth or a small paint brush.

Remove any remaining dirt with a soft cloth dampened in a mild solution of water and detergent. Do not use abrasive cleaners

on the analyzer.

Remove dust in the inside of the oven, to eliminate electrical conductivity, and possible short circuits under high humidity

conditions.

The best way to clean the interior is to dislodge the accumulated dust with dry, low-velocity air and then

remove any remaining dirt with a soft paint brush and vacuum cleaner.

4.3 System backup

Before attempting any maintenance on an analyzer, confirm that a current backup of the operating system and configuration

files are available. If unavailable, follow the instructions in the Diagnostics and Troubleshooting section of this manual to

complete the process following the procedures in the Software paragraphs of that section.

4.4 USB connectors

The SBC contains three Universal Serial Bus (USB) connectors. The USB port on the right, USB3. (J12) is used for backup,

restoring and upgrading the analyzer’s software and firmware. USB2 (J11) and USB1 (J10) are used for the Master Controller

keypad and touchscreen connectors, respectively (see Figure 4.2).

  • TEKTRONIX 5B12N Dual Time Base Plugin
  • TEKTRONIX 5A22N Differential Amplifier
  • Tektronix 5440 oscilloscope
  • TOSHIBA MULTIFUNCTIONAL DIGITAL SYSTEMS TopAccess Guide  
  • TOSHIBA e-STUDIO 7516AC Color Multifunctional Printer
  • TOSHIBA e-STUDIO 7516AC Series Color Multifunctional Printer
  • TOSHIBA CANVIO BASICS portable hard drive
  • TOSHIBA TOSBERT TM VF-nC1 Industrial Inverter
  • TOSHIBA TE2 series low-voltage digital solid-state soft starter
  • ABB Sace BSD series brushless servo drive
  • TOSHIBA VF-S15 frequency converter
  • TOSHIBA Color TV User Manual
  • TOSHIBA 2505AC, 3005AC, 3505AC mid to high end commercial grade multifunctional composite machine
  • TOSHIBA External and Internal Hard Drives
  • TOSHIBA 1600XPi Series UPS Installation and Operation
  • TOSHIBA TOSBERT S11 series frequency converter
  • Toshiba TOSBERT S7 series frequency converter
  • Toshiba Motor's Low Voltage Product Series
  • TOSHIBA VF-AS3 inverter RS485 communication function
  • TOSHIBA TOSBERT VF-A3 frequency converter
  • TOSHIBA V200 series programmable logic controller
  • TOSHIBA TOSBERT VF-S15 series frequency converter
  • TRICON ®/ Installation and maintenance of E/E2/E3 transmitters
  • TRLC0NEX Tricon fault-tolerant controller
  • WAGO 221 series LEVER-NUTS ® Compact splicing connector
  • WAGO-I/O-SYSTEM 750 Programmable Fieldbus Controller ETHERNET 
  • WAGO Rail-Mount Terminal Blocks with Screw and Stud Connection
  • WAGO series molded case circuit breaker (MCCB)
  • WAGO Rail-Mount Terminal Blocks
  • WAGO I/O System 750/753 Series Distributed Automation System
  • HIMA X-CPU 01 processor module
  • Westinghouse iGen5000 Digital Inverter Generator
  • Westinghouse WGen7500DF Dual Fuel Portable Generator
  • Westinghouse WPX2700H/WPX3100H High Pressure Cleaning Machine
  • Westinghouse WH7500V portable generator
  • Westinghouse WGen9500c portable generator
  • Westinghouse DS/DSL series low-voltage power circuit breakers
  • Westinghouse ePX3500 Electric High Voltage Cleaning Machine
  • Westinghouse ST Switch Intelligent Automatic Portable Transfer Switch
  • Westinghouse 2400i digital inverter generator
  • Westinghouse iGen series digital inverter generator
  • HIMA CPU 01 Controller Module
  • Westinghouse WPX3000e/WPX3400e electric high-pressure cleaning machine
  • Westinghouse WGen2000, WGen3600, and WGen3600V portable generators
  • Westinghouse WGen5500 Generator
  • Westinghouse WGen20000 Generator
  • Westinghouse WPro8500 and WPro12000 portable generators
  • Westinghouse iGen4500DFc Dual Fuel Digital Variable Frequency Generator
  • Watlow Series L Temperature Limiting Controller
  • Watlow Series F4P Series 1/4 DIN (96 × 96mm) Temperature/Process Controller
  • Watlow EZ-ZONE ® RME (Expansion) Module
  • Watlow EZ-ZONE ® RMA (Access) module
  • Watlow PM PLUS ™ 6 Series PID Integrated Controller
  • Watlow Immersion Heater
  • Watlow F4T Controller Installation and Failure
  • Watlow DIN-A-MITE ® Style C Solid State Power Controller
  • Watlow plug-in heater
  • Watlow Series 942 Controller
  • Watlow Series 988 Controller
  • Watlow Series 146 Temperature Regulator
  • Watlow PM LEGACY ™ Limit controller
  • Johnson AE55/NIE55 Installation Guide
  • Watlow Series 96 Temperature Controller
  • Watlow PM PLUS ™ PID/Integrated Limit Controller
  • Watlow Ceramic Fiber Heater
  • Watlow Power Series microprocessor based SCR power controller
  • Watlow thermocouple products
  • Watlow Series 965 Controller
  • Watlow PM3 LEGACY ™ PID controller
  • Watlow Series 93 Controller
  • Watlow EZ-ZONE ® PM PID controller
  • Watlow CLS200 series controller
  • YAMAHA RCX40 4-axis robot controller
  • YASKAWA Z1000 series HVAC dedicated frequency converter
  • YASKAWA HV600&Z1000U series HVAC dedicated frequency converter
  • YASKAWA Power Regenerative Unit R1000 Series
  • YASKAWA AC Drive P1000 Industrial Fan and Pump Special Frequency Converter
  • YASKAWA FP605 series industrial fan pump dedicated driver
  • YASKAWA GA500 series AC micro driver
  • YASKAWA AC Drive G7 Series (Model CIMR-G7U)
  • YASKAWA U1000 series 24V power supply options (PS-U10L/PS-U10H)
  • YASKAWA GA800 industrial AC frequency converter Key issues
  • YASKAWA GA800 Industrial AC Inverter
  • YASKAWA AC Drive V1000 Compact Vector Control Drive
  • YASKAWA Control Pack CP-317M System Controller
  • YASKAWA VARISPEED-626M/656MR5 series vector control frequency converter
  • YASKAWA AC Servo Drive HR Series (CACR-HR) Multi functional/Positioning Control
  • YASKAWA MP2000 series machine controller communication module
  • Yokogawa AQ1100 series OLTS multi field tester
  • YOKOGAWA AQ7280 Optical Time Domain Reflectometer
  • YOKOGAWA AQ2200 Series Multi Application Testing System
  • YOKOGAWA AQ6150B/AQ6151B Optical Wavelength Meter
  • YOKOGAWA AQ6360 Optical Spectrum Analyzer
  • Yokogawa AQ6375E Spectral Analyzer Remote Control
  • Yokogawa DL350 Scope Order Communication Interface
  • Yokogawa 701944/701945 100:1 High Voltage Probe
  • Yokogawa CA700 pressure calibrator
  • Yokogawa DLM5000HD series high-definition oscilloscope
  • Yokogawa AQ1210 Series OTDR Multi Field Tester
  • Yokogawa AQ1000 OTDR Optical Time Domain Reflectometer
  • YOKOGAWA WT1801R series precision power analyzer communication interface
  • YOKOGAWA DLM3034HD/DLM3054HD High Definition Oscilloscope
  • YOKOGAWA AQ23011A/AQ23012A Modular Framework Equipment
  • YOKOGAWA DLM3054HD Mixed Signal Oscilloscope
  • YOKOGAWA CW500 Power Quality Analyzer
  • YOKOGAWA CA500/CA550 Multi functional Process Calibration Instrument
  • YOKOGAWA AQ7420 High-Resolution Reflectometer
  • YOKOGAWA FG410/FG420 arbitrary waveform editor
  • Yokogawa Model 701905 Conversion Cable
  • YOKOGAWA MY600 Digital Insulation Resistance Tester
  • YOKOGAWA AQ7290 Series Optical Time Domain Reflectometer OTDR
  • YOKOGAWA LS3300 AC Power Calibrator
  • Yokogawa AQ6377E Optical Spectrum Analyzer Remote Control
  • Yokogawa AQ6361 Optical Spectrum Analyzer
  • Yokogawa IS8000 Integrated Software ECU Monitoring and Synchronization Function
  • Yokogawa ROTAMASS TI Coriolis Mass Flow Meter
  • Yokogawa ROTOMETER RAMC Metal Variable Area Flow Meter
  • Yokogawa SL1000 high-speed data acquisition unit input module
  • ​Yokogawa FLXA402T turbidity and chlorine liquid analyzer Installation and wiring
  • Yokogawa WTB10-DO Series Dissolved Oxygen Measurement System Terminal Box
  • Yokogawa Model 702928 PBD0200 Differential Probe
  • YOKOGAWA ADMAG TI Series AXW Electromagnetic Flow Meter (25-450mm) Installation and Operation
  • YOKOGAWA ADMAG TI series AXW electromagnetic flowmeter (25-1800mm)
  • YOKOGAWA DO30G Dissolved Oxygen Sensor
  • YOKOGAWA SC4AJ Conductivity Sensor
  • YOKOGAWA SC210G Conductivity Detector
  • Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)
  • Yokogawa OR8EFG KCl filled ORP sensor (IM12C07J01-01E)