K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
MOOG-G122-829A001-P-I Servoamplifier
❤ Add to collection

MOOG-G122-829A001-P-I Servoamplifier

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

These Application Notes are a guide to applying the  G122-829A001 P-I Servoamplifier. These Application Notes  can be used to: Determine the closed loop structure for your application. Select the G122-829A001 for your application. Refer also  to data sheet G122-829. Use these Application Notes to determine your system  configuration. Draw your wiring diagram. Install and commission your system. Aspects, such as hydraulic design, actuator selection, feedback  transducer selection, performance estimation, etc. are not  covered by these Application Notes. The G122-202 Application  Notes (part no C31015) cover some of these aspects. Moog  Application Engineers can provide more detailed assistance,  if required.

18384.00
¥28283.00
Weight:33.000KG
Quantity:
(Inventory: 121)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

These Application Notes are a guide to applying the  G122-829A001 P-I Servoamplifier. These Application Notes  can be used to: Determine the closed loop structure for your application. Select the G122-829A001 for your application. Refer also  to data sheet G122-829. Use these Application Notes to determine your system  configuration. Draw your wiring diagram. Install and commission your system. Aspects, such as hydraulic design, actuator selection, feedback  transducer selection, performance estimation, etc. are not  covered by these Application Notes. The G122-202 Application  Notes (part no C31015) cover some of these aspects. Moog  Application Engineers can provide more detailed assistance,  if required.


MOOG-G122-829A001-P-I Servoamplifier

2 Description The G122-829A001 is a general purpose, user configurable, P-I servoamplifier. Selector switches inside the amplifier enable  either proportional control, integral control, or both to be  selected. Many aspects of the amplifier’s characteristics can  be adjusted with front panel pots or selected with internal  switches. This enables one amplifier to be used in many  different applications. Refer also to data sheet G122-829.

3 Installation 3.1 Placement A horizontal DIN rail, mounted on the vertical rear surface  of an industrial steel enclosure, is the intended method of  mounting. The rail release clip of the G122-829A001 should  face down, so the front panel and terminal identifications  are readable and so the internal electronics receive a cooling  airflow. An important consideration for the placement of the module  is electro magnetic interference (EMI) from other equipment  in the enclosure. For instance, VF and AC servo drives  can produce high levels of EMI. Always check the  EMC compliance of other equipment before placing  the G122-829A001 close by.

3.2 Cooling Vents in the top and bottom sides of the G122-829A001 case  provide cooling for the electronics inside. These vents should  be left clear. It is important to ensure that equipment below  does not produce hot exhaust air that heats up the G122-829.

3.3 Wiring The use of crimp “boot lace ferrules” is recommended for the  screw terminals. Allow sufficient cable length so the circuit  card can be withdrawn from its case with the wires still  connected. This enables switch changes on the circuit card  to be made while the card is still connected and operating.  An extra 100mm, for cables going outside the enclosure,  as well as wires connecting to adjacent DIN rail units,  is adequate. The screw terminals will accommodate wire sizes from  0.2mm2 to 2.5mm2 (24AWG to 12AWG). One Amp rated,  0.2mm2 should be adequate for all applications.

3.4 EMC The G122-829A001 emits radiation well below the level called  for in its CE mark test. Therefore, no special precautions are  required for suppression of emissions. However, immunity from  external interfering radiation is dependent on careful wiring  techniques. The accepted method is to use screened cables for  all connections and to radially terminate the cable screens, in  an appropriate grounded cable gland, at the point of entry into  the industrial steel enclosure. If this is not possible, chassis  ground screw terminals are provided on the G122-829A001.  Exposed wires should be kept to a minimum length. Connect  the screens at both ends of the cable to chassis ground.

6.2 Input 1 An input to the error amplifier: This input is ±10V  non-inverting and has two important features:  It has a scale pot on its input that enables large inputs to be  scaled down to match smaller signals on other inputs. Scale  range is 10 to 100%. Set fully clockwise (FCW), an input of  100V can match a 10V signal on the other inputs. Note that  the maximum permissable input voltage is ±95V.  It has a switch selectable (SW4:2) lag of 55mS that can be  used to remove transients from the input signal that could  cause unwanted rapid movement in the output. Input 1 is well suited to be a command because of these two  features. If input 1 is used for feedback, be sure the lag is  switched off. Input resistance after the scale pot is 94k Ohms. 6.3 Input 2 An input to the error amplifier: This input is differential, with  non-inverting and inverting inputs. It is switch selectable (SW5)  between 4-20mA and ±10V. The 4-20mA converter produces  0 to +10V for 4 to 20mA input to terminal 7. R34 connects  from the output of the amplifier to the input of the error amp.  It is a plug-in resistor with a default value of 100k Ohms,  giving a nominal ±10V input signal range when V is selected.  Input 2 is suitable for command or feedback. R34 can be  increased to give a larger input range. Terminal 8. the inverting input, can be connected to ground  with SW6:1. 6.4 Input 3 An input to the output summing and limiting amplifier via a  plug-in resistor, R33. A typical use for this input is command  feed forward or closing the outer loop of a three stage valve.  With R33 at 10k Ohm, a ±10V input will produce ±100% valve  drive. Increasing R33 reduces the valve drive. The summing amp gain can be changed with plug-in resistor  R27. This is useful if input 3 is being used to close the outer  loop of a three stage valve. 7 Output configuration Select the output to match the input requirements of the valve  (SW2).  When voltage (V) is selected, ±10V is available into a  minimum load of 200 Ohm.  When current (I) is selected, the current level switches  (SW1:X) enable ±5 to ±100mA to be selected. The switch  selections sum, so, if for instance 45mA is required, select  30.10 and 5. The output can drive all known Moog valves  up to ±100mA. The maximum load at I (Amp) output is: RL max = 11V – 39 Ohm I (Amp) eg. at 50mA RL max is 181 Ohm  When 4-20mA is selected, the output V/I switches must be  in I and the output current SW1 must have switch 3 selected  for 20mA. Maximum load for 4-20mA output is 500 Ohm. The output amplifier is limited to approximately 105% of the  selected full scale output. If both the proportional and  integrator stages are saturated, the output will not be twice  the selected full scale but still only 105% of full scale. 8 Step push button The step push button (SW3) injects -50% valve drive  disturbance into the output. When released, the valve drive  reverts to its original level. This feature is useful for closed loop  gain optimisation.

9 P-I selection For position closed loops, initially select only P (SW6:2). For  pressure or velocity loops select I (SW6:4) initially and then P.  See paragraph 12 below for more detail. For a complete  discussion of P and I control, see the G122-202 servoamplifier  Application Notes (part no C31015). 10 Integrator input The servoamplifier has a unity gain input error amplifier  followed by two parallel stages, one a proportional amplifier  and the other an integrator. The outputs of these two stages  can be switched to the output power amplifier (see paragraph  7 above) which then drives the valve. The input to the integrator stage can be switch selected  (SW4:1) from either the output of the error amplifier, I in = E,  or the output of the proportional stage, I in = P. The latter  arrangement is used in the G122-202. It is beyond the scope  of these Application Notes to detail the benefits of each  arrangement. If you have experience with the G122-202.  I in = P would seem to be an easy choice. 11 P only gain For position loops select only P control (SW6:2). Input a step  disturbance of 50% valve current with the step push button  (SW3). Adjust the P gain for the required stability, while  monitoring the front panel valve test point, or the feedback  signal. The gain range of the proportional amplifier can be  moved by changing the plug-in resistor R17. The value loaded  when shipped is 100k Ohms, which gives a 1 to 20 range.  Selecting 200k Ohms will give 2 to 40. The circuit will function  correctly with the value of R17 between 100k Ohms and  10M Ohms. Note that as P gain is increased, the movement due to the step  push button decreases. 12 P and I gains together If you are inexperienced with integral control the following set-up method is a good starting point.  I in = E: Initially select only I (SW6:4). Press the step push  button (SW3). Increase I gain until one overshoot in the  feedback signal is observed. Next select P (SW6:2) and I (SW6:4) together and increase the  P gain to reduce the overshoot. For the I in = E arrangement the P and I sequence could be  reversed. i.e.: adjust P first, followed by I.  I in = P: For an I in = P arrangement, only the “P followed  by I” sequence of adjustment can be used. For a more thorough discussion see G122-202 Application  Notes (part no C31015). 13 I limit The contribution from the integrator to the output amplifier  can be reduced by selecting I limit on (SW6:3). When this  switch is on the integrator contribution is reduced to  approximately 15% of the level when it is off. This feature is  useful in a position loop that may require integral control to  achieve the required steady state accuracy. The limited integral  control removes valve null error when the final position is  reached. It is also useful in a pressure loop to limit overshoot,  if the valve drive saturates.


  • XYCOM MOTION 1300-00010000000000H Operating Interface 100-120 VAC
  • Xycom Automation XT1502T Pro Face
  • XYCOM PRO-FACE 1547 (1547-0011310130000)
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-102011010001
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1020310130001
  • XYCOM Automatic 9987 Operating Interface PN.9987-3338-2100 Computer Board
  • PHILIPS PG 1220 SERIES WITH CPU BOARD, XYCOM XVME-491 , CNC SERVO CONTROLLER
  • XYCOM 3512KPT 139649-002A DHL
  • XYCOM XVME-202 Controller Module Board
  • Xycom Automation Pro-face Model 4115T Pentium 4 2GHz 640KB RAM
  • PRO face Xycom 1341 egemin PM-070016 computer P/N 701301-01
  • Xycom 2050T interface workstation 1.12/. 70AMP 110/240Vac 12
  • XYCOM 1546 PROFACE Industrial Computer with RS View 32 Batch Q302
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1120310130001
  • Xycom Automation XT1502T Pro Face LAT PANEL INDUSTRIAL MONITOR
  • Xycom Pro Face 1546 Industrial Computer 2000-1000-DVDW-XP
  • Xycom Automation XT1502T FLAT PANEL INDUSTRIAL MONITOR
  • XYCOM AUTOMATION 1300-0001000000000 100-240VAC 0.5A UNMP
  • Xycom 2000T 97957-101 97957101 Operator Interface Panel with 2112-MEM
  • LCD monitor upgrade for 14 inch Xycom 9450 and Xycom 9403 control with cable kit
  • Xycom 2060 LCD Upgrade Monitor with Cable Kit 12 inches
  • Xycom 9450 14-inch LCD monitor upgrade with Cable Kit
  • XYCOM XVME-956 Optical Disc Module XVME956
  • XYCOM Pro-Face 3712 KPM Industrial PCs
  • XYCOM XVME-400 70400-001 card
  • Xycom 3515 KPM PM101906 Operator Interface
  • Xycom AOUT XVME-530 P/N 70530-001 FREV 2.2L
  • Xycom XVME-100 RAM Memory Module
  • GE SR489-P5-LO-A20-E relay protection
  • KONGSBERG DPS132 positioning system host navigation ship
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1020310130001
  • Xycom XVME-660 processor module 70660-716
  • Xycom 10330-00800 board
  • XYCOM 4860 A PLC
  • Xycom 81625DA control board 81625
  • Allen Bradley 91195A circuit board programmable for A-B Xycom terminals
  • Xycom 94354-001 display screen 94354001 8503 HMI front panel
  • XYCOM 8100-0272A Brown Output Sensor Board
  • Xycom 9485 Automatic CY
  • Xycom XVME-244 DIO Digital Input/Output Card Module 70244-001 VME Bus
  • XYCOM XVME-400 70400-001 card
  • ADEPT TECH/XYCOM 70244-702 10330-00800 PC board
  • XYCOM AIO XVME-540 Analysis of I/O Module
  • XYCOM 2050 Warranty&Extended Technical Support
  • XYCOM 81625DA Control Board
  • XYCOM 70600-001 PC board 70600001 REV 1.4
  • Xycom XVME-979 Rev. 1.1 CD-ROM/HDD/FDD interface card/module suitable for MV controller
  • XYCOM XVME-100 70100-001 card
  • PHILIPS PG 1220 SERIES WITH CPU BOARD, XYCOM XVME-491 , CNC SERVO CONTROLLER
  • Xycom 96574-001 module circuit board 96529-001 8503 PCB PWA programmable
  • ABB 3BDH000031R1 FI 820F Fieldbus Module Serial
  • ABB SPHSS13 Hydraulic Servo Module
  • ABB CB801 3BSE042245R1 PROFIBUS DP panel
  • ABB 57120001-P DSAI 130 Analog Input Board
  • ABB 086329-003 ECS BOARD Digital Input Module
  • ABB 086349-002 Industrial Control Circuit Board
  • ABB 086345-504 digital output module
  • ABB PFCL201C 10KN Tension Controller
  • ABB 3HAC17484-otational ac motor M8
  • ABB 5SHY3545L0009 High Voltage Converter Board
  • ABB 64009486 NPCT-01C; PULSE COUNT/TIMER
  • ABB HESG324013R0101 216AB61 BINARY OUTPUT * NCS1704
  • ABB 5SHX1060H0003 Reverse Conducting Integrated Gate-Commutated Thyristor
  • ABB Advant Controller 31 Series 07 KT 97/96/95 Basic Unit Hardware
  • ABB C310/0020/STD Wall-/Pipe-mount Universal Process Controller
  • ABB REF610 feeder protection relay Fault recording and communication function
  • ABB REF610 Feeder Protection Relay
  • ABB 3HAC022286-001 Serial measurement unit DSQC 633
  • ABB DSQC332A Digital I/O Module
  • ABB HIEE205010R0003 UNS 3020A-Z, V3 Ground Fault Relay
  • ABB F360 X Residual current operated circuit-breakers (RCCB)
  • ABB SK616001-A contact block
  • ABB 22mm series industrial control component models
  • ABB 1SFC261001-EN 22mm series industrial control components
  • ABB 3HAC0977-1 Resistor 10 Ohm 50W
  • ABB S503X Circuit Breaker
  • ABB S500 series miniature circuit breaker
  • ABB BC25-30-10-01 CONTACTOR
  • ABB Contactor Series Operating Instructions
  • ABB DSQC504 connector unit board
  • ABB DSQC509 Industrial Automation Module
  • ABB DSQC346B - Modular I/O System
  • ABB 3HAB8859-1/03A Industrial Control Module
  • ABB ACS800 Standard Control Procedure 7. x
  • What are the common faults and solutions for MLink interface modules?
  • ABB MNS iS System MLink 1TGE120021 Interface Module
  • ABB 3BHS600000 E80 RevF Service Manual PCS6000
  • ABB PCS6000 SYSTEM DRIVES
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Main Line Filter Unit
  • ABB 3HAC7681-1 connection harness
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1- High Performance Industrial Control Modules
  • ABB 3HAC10847-1 Industrial Control Module
  • ABB 3HAC5566-1 Industrial Control Module
  • ABB 3HAC9710-1 Robot Heat Exchanger Unit
  • ABB SPBLK01 Blank Faceplate
  • ABB IMDSM04 pulse input slave module
  • ABB INIIT03 Interface Modules
  • ABB IMFEC11/12 Analog Input Module
  • ABB IMDSO14 Digital Output Module
  • ABB NIT03 control module
  • ABB INNIS21 Network Interface Slave module
  • ABB IMBLK01 module
  • ABB 3HAC031683-004 teaching pendant cable
  • ABB SPBRC300 Controller
  • ABB PFXA401SF as a unit module
  • ABB HAC319AEV1 high-performance control module
  • ABB HIEE450964R0001 SA9923A-E circuit board
  • ABB CSA463AE HIE400103R0001 Industrial Automation Module
  • ABB UAC326AE HIEE401481R0001 excitation system module
  • ABB NU8976A High Performance Digital I/O Module
  • Alstom 43297029 Control Module Card
  • ALSTOM PIB1201A 3BEC0067- High precision industrial power supply
  • Alstom PIB310 3BHB0190 control module
  • Alstom PIB102A 3BEB0180 control board
  • ALSTOM PIB100G 3BE0226 Control Board
  • Alstom BGTR8HE 24491276A1004 Industrial Control Module
  • Alstom LC105A-1 Industrial Control Module
  • Alstom AL132 control board module card
  • Alstom IR139-1 module card
  • Alstom AM164 control board
  • ABB IGBT MODULE KIT FS450R17OE4/AGDR-71C S TIM FOIL SP 3AXD50000948185
  • ABB IGBT MODULE KIT FS300R12KE3/AGDR-71C S 68569346
  • ABB IGBT MODULE KIT FS450R17KE3/AGDR-72C S 68569427
  • ABB IGBT MODULE KIT FS450R17KE3/AGDR-71C S 68569591
  • ABB IGBT MODULE KIT FS300R17KE3/AGDR-76C S 68569362