K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
InstallationGE-369 Motor Management Relay
❤ Add to collection

InstallationGE-369 Motor Management Relay

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

The 369 is contained in a compact plastic housing with the keypad, display,  communication port, and indicators/targets on the front panel. The unit should be  positioned so the display and keypad are accessible. To mount the relay, make cutout and  drill mounting holes as shown below. Mounting hardware (bolts and washers) is provided  with the relay. Although the relay is internally shielded to minimize noise pickup and  interference, it should be mounted away from high current conductors or sources of  strong magnetic fields

28832.00
¥25767.00
Weight:2.200KG
Quantity:
(Inventory: 10)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

The 369 is contained in a compact plastic housing with the keypad, display,  communication port, and indicators/targets on the front panel. The unit should be  positioned so the display and keypad are accessible. To mount the relay, make cutout and  drill mounting holes as shown below. Mounting hardware (bolts and washers) is provided  with the relay. Although the relay is internally shielded to minimize noise pickup and  interference, it should be mounted away from high current conductors or sources of  strong magnetic fields


InstallationGE-369 Motor Management Relay

In this section, the terminals have been logically grouped together for explanatory  purposes. A typical wiring diagram for the 369 is shown above in FIGURE 3–4: Typical  Wiring for Motor Forward/Reversing Application on page 3–37 and the terminal  arrangement has been detailed in FIGURE 3–3: TERMINAL LAYOUT on page 3–36. For  further information on applications not covered here, refer to Chapter : Applications or  contact the factory for further information. Hazard may result if the product is not used for intended purposes. This equipment can  only be serviced by trained personnel. Do not run signal wires in the same conduit or bundle that carries power mains or high  level voltage or currents. 3.3.3 Control Power VERIFY THAT THE CONTROL POWER SUPPLIED TO THE RELAY IS WITHIN THE RANGE  COVERED BY THE ORDERED 369 RELAY’S CONTROL POWER. The 369 has a built-in switchmode supply. It can operate with either AC or DC voltage  applied to it. The relay reboot time of the 369 is 2 seconds after the control power is  applied. For applications where the control power for the 369 is available from the same  AC source as that of the motor, it is recommended an uninterrupted power supply be used  to power up the relay or, alternatively, use a separate DC source to power up.  Extensive filtering and transient protection has been incorporated into the 369 to ensure  reliable operation in harsh industrial environments. Transient energy is removed from the  relay and conducted to ground via the ground terminal. This terminal must be connected  to the cubicle ground bus using a 10 AWG wire or a ground braid. Do not daisy-chain  grounds with other relays or devices. Each should have its own connection to the ground  bus. The internal supply is protected via a 3.15 A slo-blo fuse that is accessible for replacement.  If it must be replaced ensure that it is replaced with a fuse of equal size (see FUSE on page  2–13). 3.3.4 Phase Current (CT) Inputs The 369 requires one CT for each of the three motor phase currents to be input into the  relay. There are no internal ground connections for the CT inputs. Refer to Chapter :  Applications for information on two CT connections.

CHAPTER 3: INSTALLATION ELECTRICAL INSTALLATION 369 MOTOR MANAGEMENT RELAY– INSTRUCTION MANUAL 3–39 The phase CTs should be chosen such that the FLA of the motor being protected is no less  than 50% of the rated CT primary. Ideally, to ensure maximum accuracy and resolution,  the CTs should be chosen such that the FLA is 100% of CT primary or slightly less. The  maximum CT primary is 5000 A. The 369 will measure 0.05 to 20 × CT primary rated current. The CTs chosen must be  capable of driving the 369 burden (see specifications) during normal and fault conditions  to ensure correct operation. See Section 7.4: CT Specification and Selection on page –230  for information on calculating total burden and CT rating. For the correct operation of many protective elements, the phase sequence and CT  polarity is critical. Ensure that the convention illustrated in FIGURE 3–4: Typical Wiring for  Motor Forward/Reversing Application on page 3–37 is followed. 3.3.5 Ground Current Inputs The 369 has an isolating transformer with separate 1 A, 5 A, and sensitive HGF (50:0.025)  ground terminals. Only one ground terminal type can be used at a time. There are no  internal ground connections on the ground current inputs. The maximum ground CT primary for the 1 A and 5 A taps is 5000 A. Alternatively the  sensitive ground input, 50:0.025. can be used to detect ground current on high resistance  grounded systems. The ground CT connection can either be a zero sequence (core balance) installation or a  residual connection. Note that only 1 A and 5 A secondary CTs may be used for the residual  connection. A typical residual connection is illustrated in below. The zero-sequence  connection is shown in the typical wiring diagram. The zero-sequence connection is  recommended. Unequal saturation of CTs, CT mismatch, size and location of motor,  resistance of the power system, motor core saturation density, etc. may cause false  readings in the residually connected ground fault circuit. FIGURE 3–5: Typical Residual Connection

The exact placement of a zero sequence CT to properly detect ground fault current is  shown below. If the CT is placed over a shielded cable, capacitive coupling of phase current  into the cable shield during motor starts may be detected as ground current unless the  shield wire is also passed through the CT window. Twisted pair cabling on the zero  sequence CT is recommended. FIGURE 3–6: Zero Sequence CT 3.3.7 Phase Voltage (VT/PT) Inputs The 369 has three channels for AC voltage inputs each with an internal isolating  transformer. There are no internal fuses or ground connections on these inputs. The  maximum VT ratio is 240:1. These inputs are only enabled when the metering option (M) is  ordered. The 369 accepts either open delta or wye connected VTs (see the figure below). The voltage  channels are connected wye internally, which means that the jumper shown on the delta  connection between the phase B input and the VT neutral terminals must be installed. Polarity and phase sequence for the VTs is critical for correct power and rotation  measurement and should be verified before starting the motor. As long as the polarity  markings on the primary and secondary windings of the VT are aligned, there is no phase


  • YASKAWA Z1000 series HVAC dedicated frequency converter
  • YASKAWA HV600&Z1000U series HVAC dedicated frequency converter
  • YASKAWA Power Regenerative Unit R1000 Series
  • YASKAWA AC Drive P1000 Industrial Fan and Pump Special Frequency Converter
  • YASKAWA FP605 series industrial fan pump dedicated driver
  • YASKAWA GA500 series AC micro driver
  • YASKAWA AC Drive G7 Series (Model CIMR-G7U)
  • YASKAWA U1000 series 24V power supply options (PS-U10L/PS-U10H)
  • YASKAWA GA800 industrial AC frequency converter Key issues
  • YASKAWA GA800 Industrial AC Inverter
  • YASKAWA AC Drive V1000 Compact Vector Control Drive
  • YASKAWA Control Pack CP-317M System Controller
  • YASKAWA VARISPEED-626M/656MR5 series vector control frequency converter
  • YASKAWA AC Servo Drive HR Series (CACR-HR) Multi functional/Positioning Control
  • YASKAWA MP2000 series machine controller communication module
  • Yokogawa AQ1100 series OLTS multi field tester
  • YOKOGAWA AQ7280 Optical Time Domain Reflectometer
  • YOKOGAWA AQ2200 Series Multi Application Testing System
  • YOKOGAWA AQ6150B/AQ6151B Optical Wavelength Meter
  • YOKOGAWA AQ6360 Optical Spectrum Analyzer
  • Yokogawa AQ6375E Spectral Analyzer Remote Control
  • Yokogawa DL350 Scope Order Communication Interface
  • Yokogawa 701944/701945 100:1 High Voltage Probe
  • Yokogawa CA700 pressure calibrator
  • Yokogawa DLM5000HD series high-definition oscilloscope
  • Yokogawa AQ1210 Series OTDR Multi Field Tester
  • Yokogawa AQ1000 OTDR Optical Time Domain Reflectometer
  • YOKOGAWA WT1801R series precision power analyzer communication interface
  • YOKOGAWA DLM3034HD/DLM3054HD High Definition Oscilloscope
  • YOKOGAWA AQ23011A/AQ23012A Modular Framework Equipment
  • YOKOGAWA DLM3054HD Mixed Signal Oscilloscope
  • YOKOGAWA CW500 Power Quality Analyzer
  • YOKOGAWA CA500/CA550 Multi functional Process Calibration Instrument
  • YOKOGAWA AQ7420 High-Resolution Reflectometer
  • YOKOGAWA FG410/FG420 arbitrary waveform editor
  • Yokogawa Model 701905 Conversion Cable
  • YOKOGAWA MY600 Digital Insulation Resistance Tester
  • YOKOGAWA AQ7290 Series Optical Time Domain Reflectometer OTDR
  • YOKOGAWA LS3300 AC Power Calibrator
  • Yokogawa AQ6377E Optical Spectrum Analyzer Remote Control
  • Yokogawa AQ6361 Optical Spectrum Analyzer
  • Yokogawa IS8000 Integrated Software ECU Monitoring and Synchronization Function
  • Yokogawa ROTAMASS TI Coriolis Mass Flow Meter
  • Yokogawa ROTOMETER RAMC Metal Variable Area Flow Meter
  • Yokogawa SL1000 high-speed data acquisition unit input module
  • ​Yokogawa FLXA402T turbidity and chlorine liquid analyzer Installation and wiring
  • Yokogawa WTB10-DO Series Dissolved Oxygen Measurement System Terminal Box
  • Yokogawa Model 702928 PBD0200 Differential Probe
  • YOKOGAWA ADMAG TI Series AXW Electromagnetic Flow Meter (25-450mm) Installation and Operation
  • YOKOGAWA ADMAG TI series AXW electromagnetic flowmeter (25-1800mm)
  • YOKOGAWA DO30G Dissolved Oxygen Sensor
  • YOKOGAWA SC4AJ Conductivity Sensor
  • YOKOGAWA SC210G Conductivity Detector
  • Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)
  • Yokogawa OR8EFG KCl filled ORP sensor (IM12C07J01-01E)
  • YOKOGAWA FU24 pH/ORP Composite Sensor with Pressure Compensation (IM 12B06J03-03EN-P)
  • Yokogawa SC200 Intelligent Two Wire Conductivity Transmitter System (IM12D08B01-01E)
  • YOKOGAWA CENTUM VP Integrated Production Control System (TI33J01A10-01EN)
  • ABB AO2000-LS25 Laser Analysts User Manual
  • YOKOGAWA FA-M3 positioning module (with analog voltage output)
  • YOKOGAWA FA-M3 Series Basic Modules
  • YOKOGAWA EJA110E Diff erential Pressure Transmitter
  • Zygo 3D Optical Profiler
  • Zygo Mark II 4-inch interferometer system
  • Zygo NewView 9000 3D Optical Contour Analyzer Core Features
  • Zygo NewView 9000 3D Optical Profilometer Technology
  • Zygo Profilometer Standard Operating Procedure
  • Zygo’s Guide to Typical Interferometer Setups
  • ZYGO Laser Interferometer Accessory Guide OMP-0463AM
  • ZYGO MetroPro 9.0 Reference Guide (OMP-0347M)
  • Zygo Device Standard Operating Procedure (SOP)
  • Zygo Verify Laser Interferometer
  • Zygo MicroLUPI interferometer
  • ZYGO ZMI-1000 Displacement Measuring Interferometer System
  • Zygo's ZMI 2000 displacement measurement interferometer system
  • ABB IGCT Technology: A Revolutionary Breakthrough in High Voltage Inverters
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® MDS 5000 installation method
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Bently Nevada 3500/65 145988-02 Channel Temperature Monitor
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF RMV-111D undervoltage and overvoltage relay
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • ​GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson S Series Traditional I/O Modules
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNS iS MConnect interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0
  • ABB Panel 800 Version 6 PP885 Hardware and Installation