K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
GE VMIVME-5588 High-Speed Reflective Memory
❤ Add to collection

GE VMIVME-5588 High-Speed Reflective Memory

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

GE VMIVME-5588 High-Speed Reflective Memory

28756.00
¥27740.00
Weight:4.000KG
Quantity:
(Inventory: 31)
Consultation
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

GE VMIVME-5588 High-Speed Reflective Memory


GE VMIVME-5588 High-Speed Reflective Memory

DESCRIPTION

VMIVME-5588 is a  high-performance, daisy-chained VME-to-VME network.  Data is transferred by writing to on-board global RAM. The  data is automatically sent to the location in memory on all  Reflective Memory boards on the network.The Reflective Memory  concept provides a very fast and efficient way of sharing data  across distributed computer systems.

VMIC’s VMIVME-5588 Reflective Memory interface  allows data to be shared between up to 256 independent  systems (nodes) at rates up to 29.5 Mbyte/s. Each Reflective  Memory board may be configured with 256 Kbyte to  16 Mbyte of on-board SRAM. The local SRAM provides fast  Read access times to stored data. Writes are stored in local  SRAM and broadcast over a high-speed data path to other  Reflective Memory nodes. The transfer of data between  nodes is software transparent, so no I/O overhead is required.  Transmit and Receive FIFOs buffer data during peak data  rates to optimize CPU and bus performance to maintain high  data throughput.

FEATURES

• High-speed, easy-to-use network (1.2 Gbaud serially) 

• Data written to memory in one node is also written to memory in all nodes on  the network 

• Up to 1,000 ft between nodes with multimode fiber, 10 km with single mode,  30 m with twinax 

• Supports up to 256 nodes 

• Data transferred at 29.5 Mbyte/s without redundant transfer 

• Data transferred at 14.8 Mbyte/s with redundant transfer 

• Any node on the network can generate an interrupt in any other node on the  network or in all network nodes with a single command 

• Error detection • Redundant transmission mode for suppressing errors 

• No processor overhead 

• No processor involvement in the operation of the network 

• Up to 16 Mbyte of Reflective Memory 

• A24:A32:D32:D16:D8 memory access 

• Two-slot 6U VMEbus board 

• Any node may reset any or all other nodes 

• Software compatible with VMIVME-5578 

• Software-addressable digital output bit (available at front panel and P2  connector) for interfacing with the VMIVME-5599 optical switch board or any  user-defined purpose • Multimode or single-mode fiber-optic or twinax cable options

LINK ARBITRATION

The VMIVME-5588 system  is a daisy-chain ring as shown in Figure 1. Each transfer is  passed from node-to-node until it has gone all the way around  the ring and reaches the originating node. Each node  retransmits all transfers that it receives except those that it  originated. Nodes are allowed to insert transfers between  transfers passing through.

INTERRUPT TRANSFERS

In addition to  transferring data between nodes, the VMIVME-5588 will  allow any processor in any node to generate an interrupt on  any other node. These interrupts would generally be used to  indicate to the receiving node that new data has been sent and  is ready for processing. These interrupts are also used to  indicate that processing of old data is completed and the  receiving node is ready for new data.

ERROR MANAGEMENT

Errors are detected by the  VMIVME-5588 with the use of the error detection facilities  of the Fiber Channel encoder/decoder and additional  interlaced parity encoding and checking. The error rate of the  VMIVME-5588 is a function of the rate of errors produced in  the cable portion of the system. This optical error rate  depends on the length and type of fiber-optic cable. Assuming  an optical error rate of 10-12, the error rate of the  VMIVME-5588 is 1.3 x 10-10 transfers/transfer.

However, the rate of undetectable errors is less than  1.64 x 10-20 transfers/transfer. When a node detects an error,  the erroneous transfer is removed from the system and a  VMEbus interrupt is generated, if enabled.

The VMIVME-5588 can be operated in a redundant  transfer mode in which each transfer is transmitted twice. In  this mode of operation, the first of the two transfers is used  unless an error is detected in which case the second transfer  is used. In the event that an error is detected in both transfers,  the node removes the transfer from the system. The  probability of both transfers containing an error is 1.64 x  10-20, or about one error every 317,855 years at maximum  data rate.

PROTECTION AGAINST LOST DATA

Data  received by the node from the fiber-optic cable is error  checked and placed in a receive FIFO. Arbitration with  accesses from the VMEbus then takes place and the data is  written to the node’s SRAM and to the node’s transmit FIFO.  Data written to the board from the VMEbus is placed directly  into SRAM and into the transmit FIFO. Data in the transmit  FIFO is transmitted by the node over the cable to the next  node. Data could be lost if either FIFO were allowed to  become full.

The product is designed to prevent either FIFO from  becoming full and overflowing. It is important to note the  only way that data can start to accumulate in FIFOs is for data  to enter the node at a rate greater than 29.5 Mbyte/s or  14.8 Mbyte/s in redundant mode. Since data can enter from  the fiber and from the VMEbus, it is possible to exceed these  rates. If the transmit FIFO becomes half-full, a bit in the  Status Register is set and, if enabled, an interrupt is generated.  This is an indication to the node’s software that subsequent  WRITEs to the Reflective Memory should be suspended until  the FIFO is less than half-full. If the half-full indication is  ignored and the transmit FIFO becomes full, then writes to  the Reflective Memory will not be acknowledged until access  is granted or the CPU times out with a Bus Error.


  • WESTINGHOUSE eVinci ™ Micro reactor
  • WESTINGHOUSE HC series molded case circuit breaker
  • WESTINGHOUSE MAX-VH ™/ MAX-VHP ™ Series vertical hollow shaft induction motor
  • WESTINGHOUSE Alpha Plus Series Low Voltage Distribution System
  • WESTINGHOUSE Three Phase Induction Motors
  • WESTINGHOUSE iGen5000 Digital Inverter Generator
  • WESTINGHOUSE E510 series compact AC frequency converter
  • WESTINGHOUSE E-Series MCCB (Molded Case Circuit Breaker)
  • WESTINGHOUSE Transformer Product Line
  • Emerson Ovation OCR1100 Controller
  • BENDER Isolated Power Panels
  • Bender LifeGuard® LG2-Series Protection Panels
  • Bender LINETRAXX ® CTAC series AC measurement current transformer
  • Bender GPM series grounding power module
  • BENDER LINETRAXX® CTUB100 series
  • Bender LifeGuard ® LG2 series protective panel
  • BENDER ISOMETER ® Iso685 series
  • BENDER Greenlee 555C Electric Pipe Bending Machine
  • BENDER ISOMETER ® Iso685 (W) - D/- S insulation monitoring equipment
  • BENDER LINETRAXX ® VMD420 Three phase Voltage Frequency Monitor
  • BENDING 77 Series Electric Bender with Single Shoe Groups
  • BENDER EDS3090 series portable grounding fault location system
  • BENDER ISOSCAN ® EDS460/490-EDS461/491 series
  • Bender EDS3090/-91/-92/-96 series
  • SMC IRV10/20 series vacuum regulator
  • BMCM AMS42/84 5B amplifier system
  • ABB AFS series switches
  • NI VXIpc-870B Series Embedded Pentium III VXIbus Controllers
  • BENDER ISOMETER ® IRDH265/365 series insulation monitoring equipment
  • BENDER ISOMETER ® IRDH375 series Insulation Monitoring Equipment
  • BENDER WR70x175S (P)... WR200x500S (P) rectangular measuring current transformer
  • BENDER IRDH575 Insulation Monitoring Equipment (IT System)
  • BENDER IRDH575 Series Digital Ground Fault Monitor
  • BENDER RCMA475LY AC/DC sensitive residual current monitor
  • YOKOGAWA FIO I/O module with built-in safety barrier
  • YOKOGAWA YS100 series instrument
  • YOKOGAWA FCN/FCJ Autonomous Controller
  • YOKOGAWA AIP 830 Single Circuit Operation Keyboard
  • YOKOGAWA FIO System (compatible with Vnet/IP) Hardware Specification Manual
  • YOKOGAWA CENTUM VP Integrated Production Control System
  • YOKOGAWA FFCS COMPACT CONTROL STATION IN CENTUM CS3000 R3
  • YOKOGAWA PW481, PW482, PW484 series power modules ​
  • Yokogawa NFA Series Analog I/O Modules
  • YOKOGAWA AFV40S/AFV40D on-site control unit (with cabinet)
  • YOKOGAWA VP6F1900/1905 Control Function (A2FV70  Dedicated)
  • YOKOGAWA CENTUM VP System (Vnet/IP Version)
  • YOKOGAWA CENTUM VP System FCS (Field Control Station)
  • YOKOGAWA built-in isolation barrier I/O module (FIO specific)
  • YOKOGAWA CENTUM VP System HMI (HIS)
  • YOKOGAWA FIO System Overview (for Vnet/IP)
  • YOKOGAWA STARDOM FCN-100/FCJ Migration Technology
  • YOKOGAWA FA-M3 Embedded Machine Controller
  • YOKOGAWA ZR22G, ZR402G split zirconia oxygen/humidity analyzer
  • CENTUM CS 3000 Integrated Production Control System
  • YOKOGAWA CENTUM CS 1000 Distributed Control System Control Function
  • YOKOGAWA CENTUM VP Distributed Control System
  • Yokogawa CENTUM VP series terminal block
  • Yokogawa Model AIP830 Operation Keyboard for Singleloop Operation
  • Foxboro Evo ™ Compact 200 Series I/O subsystem of the system
  • Schneider Tricon ™ V9-v11 Systems High Fault Tolerant Programmable Logic and Process Controllers
  • Foxboro Evo FDSI Triconex integrator driver product
  • EcoStruxure Foxboro DCS Control Editors products
  • Foxboro I/A Series Industrial Automation System
  • GE Grid Solutions Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE Multilin 750/760 Feeder protection system
  • ABB MEASUREMENT & ANALYTICS Web tension systems
  • Foxboro FBM224 Modbus ® communication module
  • Foxboro Evo ™ Compact 200 Series I/O Subsystem
  • Foxboro ™ DCS Compact FBM201 Analog Input Interface Module
  • SIEMENS SGT-2000E series gas turbine
  • SIEMENS SIMATIC HMI Intelligent Panel
  • SIEMENS SIMATIC HMI Intelligent Panel Operation Instructions
  • SIEMENS SIMATIC S7 300/400 operates MICROMASTER 4 (MM4) frequency converter through Profibus DP
  • SIEMENS SIMATIC HMI Basic Panels Operating Manual
  • SIEMENS SINAMICS G120 Control Unit CU240E
  • SIEMENS SINAMICS G130/G150 products
  • SIEMENS SINAMICS Low Voltage Inverter
  • SIEMENS Climatix ™ S400 STD HVAC Controller (POS646 Series)
  • SIEMENS 3AH3 vacuum circuit breaker
  • SIEMENS QFM31xx series air duct sensor
  • SIEMENS SIMOTICS SD 1LE7 series low-voltage motor (shaft height 71-315)
  • SIEMENS SIMOTICS L-1FN3 series linear motor
  • SIEMENS SITRANS P DS III series pressure transmitter
  • SIEMENS ICROMASTER 420 frequency converter
  • SIEMENS SIMOGEAR Gear Motor Products
  • SIEMENS 40.5kV 3AE8 Solid Sealed Series Vacuum Circuit Breaker
  • SIEMENS PL and ES Series Load Centers Selection and Application Guide
  • SIEMENS SIMATIC Drive Controller System
  • SIEMENS SIMATIC S7-1500/ET 200MP Automation System
  • SINAMICS SIRIUS series switchgear
  • SIEMENS G120 CU240BE-2 frequency converter
  • SIEMENS 3AH3 series vacuum circuit breaker
  • SIEMENS 1PH7 series asynchronous motors for machine tools
  • SIEMENS SIMOTICS 1LE8 series low-volt​age high-power motor
  • SIEMENS SIMATIC S5 series PLC STEP 5 programming software
  • SIEMENS E50 series terminal power distribution products
  • SIEMENS SIMOTICS SD 1LE5 series low-voltage motor
  • SIEMENS SIMOTICS L-1FN3 Linear Motor Operating Instructions
  • SIEMENS VVF53./VXF53. series flange valves
  • SIEMENS SIMATIC S5 S5-115U Programmable Controller
  • SIEMENS SMART S7-200 Intelligent Programmable Controller
  • SIEMIENS MCCB Series Short Circuit Rating Guide
  • SIEMIENS SIPART PS2 (6DR5...) Electrical Positioner Operation Guide
  • SIEMIENS SIMATIC TP170B Touch Screen
  • SIEMENS SIMATIC TI545/TI555 Controller
  • SIEMIENS SIMATIC 505 Analog I/O Module
  • SIEMIENS S7-1200/1500 Controller TIA Portal Programming Guide
  • SIEMIENS PFT6 series weighing sensor
  • SIEMIENS 1FK6 series three-phase servo motor
  • Siemens medium voltage vacuum switch technology and components
  • TEKTRONIX CFG 253 Function Generator
  • TEKTRONIX P6022 Current Probe
  • Tektronix AWG70000 series arbitrary waveform generator
  • Tektronix AWG2021 250 MHz Arbitrary Waveform Generator
  • Tektronix DMM4050 6 half bit high-precision digital multimeter
  • Tektronix 370B Programmable Curve Tracer
  • TEKTRONIX TCPA300/400 current probe amplifier
  • Tektronix AFG1022 Function Generator
  • Tektronix P6139A 10X Passive Probe
  • Tektronix 3 Series Hybrid Domain Oscilloscope
  • TEKTRONIX AFG31000 series arbitrary function generator
  • TEKTRONIX THDP0100/0200 and TMDP0200 series high-voltage differential probes
  • TEKTRONIX 3 Series Mixed Domain Oscilloscope MDO32 and MDO34
  • Tektronix 2440 digital oscilloscope
  • Tektronix MSO4000/DPO4000 series digital fluorescence oscilloscope
  • Tektronix TPS2000 series digital storage oscilloscope
  • Tektronix TBS1000B and TBS1000B-EDU series digital storage oscilloscopes
  • Tektronix XYZs of Oscilloscopes