K-WANG

+086-15305925923
Service expert in industrial control field!
NameDescriptionContent
Adequate Inventory, Timely Service
pursuit of excellence 
Ship control system
Equipment control system
Power monitoring system
Current position:
   
Brand
Honeywell High Voltage RTP Cable (1.0M, 3.28ft.) Note 6 (NOT FOR SIL2 SYSTEMS) 900RTC-H110
❤ Add to collection

Honeywell High Voltage RTP Cable (1.0M, 3.28ft.) Note 6 (NOT FOR SIL2 SYSTEMS) 900RTC-H110

+86-15305925923
Mr.Wang
wang@kongjiangauto.com

The optional Remote Termination Panel (RTP) provides an easy way to connect the HC900 controller to

the field wiring. The RTP integrates some of the typical externally connected components, reducing wiring

and setup time. It also minimizes the need for multiple wires under a single screw connection by

expanding the connectivity of the shared terminals of the I/O modules.

11500.00
¥11500.00
Weight:3.550KG
Quantity:
(Inventory: 111)
Consultation
Accessories
  • ABB-07AC91-Analo
    Original :¥16475.00
    With a price :¥16475
    Quantity  
  • ABB-AC31 91serie
    Original :¥16475.00
    With a price :¥16475
    Quantity  
  •   
    Original :¥
    0.00
      
      With the total price :¥
    0.00
Product parameters
  • Telephone:+86-15305925923
  • contacts:Mr.Wang
  • Email:wang@kongjiangauto.com
Description

The optional Remote Termination Panel (RTP) provides an easy way to connect the HC900 controller to

the field wiring. The RTP integrates some of the typical externally connected components, reducing wiring

and setup time. It also minimizes the need for multiple wires under a single screw connection by

expanding the connectivity of the shared terminals of the I/O modules.




Honeywell High Voltage RTP Cable (1.0M, 3.28ft.) Note 6 (NOT FOR SIL2 SYSTEMS) 900RTC-H110

Remote Termination Panel (RTP)
The optional Remote Termination Panel (RTP) provides an easy way to connect the HC900 controller to
the field wiring. The RTP integrates some of the typical externally connected components, reducing wiring
and setup time. It also minimizes the need for multiple wires under a single screw connection by
expanding the connectivity of the shared terminals of the I/O modules.
See Appendix - Installation of Remote Termination Panels (RTPs) page 217 for details.
Terminal Block-to-Field (Signal) Wiring
Although both of the two available terminal block styles can be used on all I/O module types, wiring
methods vary with the module type and with the type of field devices connected to the terminal block. The
descriptions that follow provide details.
Wiring can be routed through the terminal block at the top, at the bottom, or both. Wiring should be fixed
in place using wire ties at the slotted tabs that are molded in at top and bottom of each terminal block.
Wiring Rules and Recommendations
In general, stranded copper wire should be used for non-thermocouple electrical connections. Twisted-pair
wiring with shielded cable is recommended and will improve noise immunity if wire routing is suspect.
Wire Gage
Observe all local codes when making power connections. Unless local electrical codes dictate otherwise,
the recommended minimum wire size for connections is given in Table 12.
Table 12 – Minimum Recommended Wire Sizes
Wire
Gauge
Wire Application
14 Earth ground to common power supply.
14 to 16 AC to power supply
10 to 14 Earth ground wire
20 DC current and voltage field wiring
22 DC current and voltage wiring in control room
Routing and Securing Wires
Typically, field wiring is routed to connections at a terminal panel near the controller and then from the
terminal panel to the terminal blocks on the I/O modules.
Whatever method of routing is used, wiring must be mechanically supported along its length, and must be
protected from physical damage and electromagnetic (noise) interference. (See Electrical Considerations
page 56.)
Also, all wires must be securely terminated, using appropriate wiring practices.


Signal Grounding (
Figure 39)
The shield for each input should be grounded
at the grounding bar (optional) at the top or
bottom of each rack as indicated in Figure 40.
For low-frequency noise rejection, I/O wiring
shields should be grounded only at the
controller end.
For high-frequency noise rejection, shields
should be grounded at the controller and at
the field device. If the ground voltage
potential at the field device is different from
that at the controller, a DC isolation capacitor
should be used between the shield and the
grounding bar on the rack.
Figure 39 – Signal-Wire Grounding
Aluminum grounding bars for I/O wiring are available as options. When selected for use, they are fastened
to the top and/or bottom of each rack, as indicated in Figure 40. To enable connection of multiple ground
wires with a single screw, the wires can be twisted together and secured with a wire lug.
To facilitate module replacement, it is advisable in most cases to route all wiring through either the top or
the bottom of the terminal block. This
allows the terminal block to pivot up or
down, allowing ready access to the
module, and is the preferred method
for a limited number of wires.
For a larger number of wires, or for
wires of a heavier gauge, it is advisable
to route some wires through the top of
the terminal block, and some through
the bottom, as indicated in Figure 40.
In this case, it is necessary to adjust
wire length so as to ensure adequate
flexibility of the twisted wires and to
provide clearance sufficient to remove
the I/O module.
Terminal Block Jumper Combs
Two styles of terminal block jumper combs are available for use with the barrier-style terminal blocks: ten position and two position. (Figure 41)
The ten-position jumpers are used with AC
output modules to inter-connect L1 (AC Hot) of
all channels.
The two-position jumpers are used to connect
Common (DC negative or AC neutral) for the DC
input module, the DC Output Module, and the
AC Input Module. Each of these module types
has groups of eight channels, with the two groups
isolated from each other. The two-position
jumper connects (Common) terminals 10 and 12,
making one group of sixteen non-isolated
channels.
The two-position jumper can also be used to
connect the V+ terminals on the DC Output
Module.
Refer to the wiring information on each module,
given in this section of this manual.
  • YAMAHA RCX40 4-axis robot controller
  • YASKAWA Z1000 series HVAC dedicated frequency converter
  • YASKAWA HV600&Z1000U series HVAC dedicated frequency converter
  • YASKAWA Power Regenerative Unit R1000 Series
  • YASKAWA AC Drive P1000 Industrial Fan and Pump Special Frequency Converter
  • YASKAWA FP605 series industrial fan pump dedicated driver
  • YASKAWA GA500 series AC micro driver
  • YASKAWA AC Drive G7 Series (Model CIMR-G7U)
  • YASKAWA U1000 series 24V power supply options (PS-U10L/PS-U10H)
  • YASKAWA GA800 industrial AC frequency converter Key issues
  • YASKAWA GA800 Industrial AC Inverter
  • YASKAWA AC Drive V1000 Compact Vector Control Drive
  • YASKAWA Control Pack CP-317M System Controller
  • YASKAWA VARISPEED-626M/656MR5 series vector control frequency converter
  • YASKAWA AC Servo Drive HR Series (CACR-HR) Multi functional/Positioning Control
  • YASKAWA MP2000 series machine controller communication module
  • Yokogawa AQ1100 series OLTS multi field tester
  • YOKOGAWA AQ7280 Optical Time Domain Reflectometer
  • YOKOGAWA AQ2200 Series Multi Application Testing System
  • YOKOGAWA AQ6150B/AQ6151B Optical Wavelength Meter
  • YOKOGAWA AQ6360 Optical Spectrum Analyzer
  • Yokogawa AQ6375E Spectral Analyzer Remote Control
  • Yokogawa DL350 Scope Order Communication Interface
  • Yokogawa 701944/701945 100:1 High Voltage Probe
  • Yokogawa CA700 pressure calibrator
  • Yokogawa DLM5000HD series high-definition oscilloscope
  • Yokogawa AQ1210 Series OTDR Multi Field Tester
  • Yokogawa AQ1000 OTDR Optical Time Domain Reflectometer
  • YOKOGAWA WT1801R series precision power analyzer communication interface
  • YOKOGAWA DLM3034HD/DLM3054HD High Definition Oscilloscope
  • YOKOGAWA AQ23011A/AQ23012A Modular Framework Equipment
  • YOKOGAWA DLM3054HD Mixed Signal Oscilloscope
  • YOKOGAWA CW500 Power Quality Analyzer
  • YOKOGAWA CA500/CA550 Multi functional Process Calibration Instrument
  • YOKOGAWA AQ7420 High-Resolution Reflectometer
  • YOKOGAWA FG410/FG420 arbitrary waveform editor
  • Yokogawa Model 701905 Conversion Cable
  • YOKOGAWA MY600 Digital Insulation Resistance Tester
  • YOKOGAWA AQ7290 Series Optical Time Domain Reflectometer OTDR
  • YOKOGAWA LS3300 AC Power Calibrator
  • Yokogawa AQ6377E Optical Spectrum Analyzer Remote Control
  • Yokogawa AQ6361 Optical Spectrum Analyzer
  • Yokogawa IS8000 Integrated Software ECU Monitoring and Synchronization Function
  • Yokogawa ROTAMASS TI Coriolis Mass Flow Meter
  • Yokogawa ROTOMETER RAMC Metal Variable Area Flow Meter
  • Yokogawa SL1000 high-speed data acquisition unit input module
  • ​Yokogawa FLXA402T turbidity and chlorine liquid analyzer Installation and wiring
  • Yokogawa WTB10-DO Series Dissolved Oxygen Measurement System Terminal Box
  • Yokogawa Model 702928 PBD0200 Differential Probe
  • YOKOGAWA ADMAG TI Series AXW Electromagnetic Flow Meter (25-450mm) Installation and Operation
  • YOKOGAWA ADMAG TI series AXW electromagnetic flowmeter (25-1800mm)
  • YOKOGAWA DO30G Dissolved Oxygen Sensor
  • YOKOGAWA SC4AJ Conductivity Sensor
  • YOKOGAWA SC210G Conductivity Detector
  • Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)
  • Yokogawa OR8EFG KCl filled ORP sensor (IM12C07J01-01E)
  • YOKOGAWA FU24 pH/ORP Composite Sensor with Pressure Compensation (IM 12B06J03-03EN-P)
  • Yokogawa SC200 Intelligent Two Wire Conductivity Transmitter System (IM12D08B01-01E)
  • YOKOGAWA CENTUM VP Integrated Production Control System (TI33J01A10-01EN)
  • ABB AO2000-LS25 Laser Analysts User Manual
  • YOKOGAWA FA-M3 positioning module (with analog voltage output)
  • YOKOGAWA FA-M3 Series Basic Modules
  • YOKOGAWA EJA110E Diff erential Pressure Transmitter
  • Zygo 3D Optical Profiler
  • Zygo Mark II 4-inch interferometer system
  • Zygo NewView 9000 3D Optical Contour Analyzer Core Features
  • Zygo NewView 9000 3D Optical Profilometer Technology
  • Zygo Profilometer Standard Operating Procedure
  • Zygo’s Guide to Typical Interferometer Setups
  • ZYGO Laser Interferometer Accessory Guide OMP-0463AM
  • ZYGO MetroPro 9.0 Reference Guide (OMP-0347M)
  • Zygo Device Standard Operating Procedure (SOP)
  • Zygo Verify Laser Interferometer
  • Zygo MicroLUPI interferometer
  • ZYGO ZMI-1000 Displacement Measuring Interferometer System
  • Zygo's ZMI 2000 displacement measurement interferometer system
  • ABB IGCT Technology: A Revolutionary Breakthrough in High Voltage Inverters
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® MDS 5000 installation method
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Bently Nevada 3500/65 145988-02 Channel Temperature Monitor
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF RMV-111D undervoltage and overvoltage relay
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • ​GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson S Series Traditional I/O Modules
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNS iS MConnect interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0